fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Sora: A Revolução dos Vídeos Gerados por IA

Rafael Duarte por Rafael Duarte
fevereiro 20, 2024
em Notícias
0
6
COMPARTILHAMENTOS
202
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

A inteligência artificial está constantemente evoluindo e nos surpreendendo com suas capacidades. Recentemente, a OpenAI, criadora do ChatGPT, lançou o Sora, um modelo de IA que promete transformar a maneira como criamos conteúdo visual. 

Vamos explorar o Sora, como ele funciona, suas vantagens e limitações.

O que é o Sora?

O Sora é um modelo de IA capaz de criar vídeos realistas a partir de comandos de texto. Imagine escrever uma descrição detalhada de uma cena e, em seguida, ver essa cena ganhar vida em um vídeo de alta qualidade. 

O Sora não apenas compreende os comandos de texto, mas também as regras do mundo físico, o que torna os clipes gerados pela ferramenta mais verídicos.

Os resultados obtidos sugerem que dimensionar modelos de geração de vídeo é um caminho promissor para a construção de simuladores de uso geral do mundo físico.

O Sora se coloca como concorrente de modelos similares de Google (Lumiere) e Meta (Make-A-Video). Essas tecnologias estão em fase de testes e ainda não foram liberadas para o uso do público.

 

Como o Sora Funciona?

Sora - Criando vídeos a partir de textos.

 

  • Comandos de Texto: O usuário escreve um prompt de comando em texto para o Sora, especificando o que deseja ver no vídeo.

 

  • Técnica de Difusão: O Sora utiliza uma técnica chamada “difusão”. Inicialmente, o vídeo parece ruído estático, semelhante aos ruídos de uma TV fora do ar. No entanto, aos poucos, o Sora transforma esse ruído em um conteúdo de alta qualidade visual.

Sora - Criando vídeos a partir de textos.

  • Profundo Conhecimento de Linguagem: O modelo possui um profundo conhecimento de linguagem, permitindo a interpretação precisa das instruções do usuário. Ele compreende não apenas o que foi solicitado, mas também como esses elementos existem no mundo físico real, aumentando a precisão do modelo.

 

  • Cenas Complexas: O Sora pode criar vídeos de até 60 segundos com cenas complexas, incluindo personagens, movimentos específicos e detalhes precisos.

 

As vantagens do Sora são notáveis. Ele torna a produção de conteúdo mais eficiente e criativa, permitindo a criação rápida de vídeos realistas a partir de texto. 

O treinamento do modelo é feito em uma rede que reduz a dimensionalidade dos dados visuais. Essa rede recebe o input original e produz uma representação latente que é comprimida tanto temporal quanto espacialmente. 

 

Sora é treinado e posteriormente gera vídeos dentro deste espaço latente compactado. Também é treinado um modelo de decodificador correspondente que mapeia as latentes geradas de volta ao espaço de pixels.

 

Além disso, antes de produzir um vídeo real, o Sora permite explorar conceitos e designs por meio de sua geração visual baseada em texto. Na indústria do entretenimento e nos jogos, o Sora abre novas possibilidades criativas, permitindo a criação de cenas e sequências personalizadas.

 

Além da criação do zero de vídeos, apenas a partir de texto, há também a funcionalidade de edição de cenas já existentes, como a troca de elementos reais por outros gerados pela IA. Está circulando um vídeo oficial da Open IA onde em uma cena de um carro andando, o carro original gravado no mundo real, é trocado por um outro modelo.

 

Durações, resoluções e proporções

Abordagens anteriores para geração de imagens e vídeos normalmente redimensionam, cortam ou ajustam vídeos para um tamanho padrão – por exemplo, vídeos de 4 segundos com resolução de 256×256. A OpenAI apresenta que, em vez disso, o treinamento com dados em seu tamanho original oferece vários benefícios para a tecnologia.

Sora - Criando vídeos a partir de textos.

O modelo Sora pode trabalhar com vídeos widescreen 1920x1080p, vídeos verticais 1080×1920 e tudo mais.

Isso permite que Sora crie conteúdo para diferentes dispositivos diretamente em suas proporções nativas.

Ele também permite criar rapidamente protótipos de conteúdo em tamanhos menores antes de gerar em resolução total – tudo com o mesmo modelo.

 

E esse é um dos grandes diferenciais do Sora.

 

Riscos e desafios

No entanto, o modelo também enfrenta desafios. Ele pode ter dificuldade em simular com precisão a física de cenas complexas e compreender instâncias específicas de causa e efeito. Além disso, o processo de criação dos vídeos não é tão simples quanto parece, exigindo a geração de muitas imagens para obter resultados de qualidade. 

 

A OpenAI também está empenhada em proteções contra conteúdos violentos, de cunho sexual e deepfakes gerados pelo Sora.

 

O Futuro É Brilhante

O Sora é uma ferramenta empolgante que promete expandir as possibilidades criativas na geração de conteúdo visual a partir de texto. O novo modelo de IA está em fase de testes e não há previsão de lançamento para o público, e precisa ter cuidado especial com deepfakes e ajustes físicos dos vídeos gerados. 

Contudo, Sora já apresenta um potencial imenso, e estamos ansiosos para ver como o modelo será utilizado no futuro e impactará o cotidiano e a criação de novas tecnologias.



CompartilharCompartilhar2Enviar
Post Anterior

APIs na Era da Conectividade

Próximo Post

Depth Anything: Como Criar Mapas de Profundidade

Rafael Duarte

Rafael Duarte

Relacionado Artigos

Green Card aprovado por habilidades extraordinárias em Data Science
Blog

Green Card aprovado por habilidades extraordinárias em Data Science

por Carlos Melo
julho 14, 2025
DeepSeek vazamento de dados de usuários
Notícias

DeepSeek: Vazamento de dados expõe dados de usuários

por Equipe Sigmoidal
fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA
Notícias

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

por Equipe Sigmoidal
janeiro 25, 2025
Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA
Notícias

Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

por Equipe Sigmoidal
janeiro 22, 2025
Trump revoga decreto de Biden sobre regulação de Inteligência Artificial
Notícias

Trump revoga decreto de Biden sobre regulação de Inteligência Artificial

por Equipe Sigmoidal
janeiro 21, 2025
Próximo Post
Depth Anything - Estimativa de Profundidade Monocular

Depth Anything: Como Criar Mapas de Profundidade

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    485 compartilhamentos
    Compartilhar 194 Tweet 121
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    407 compartilhamentos
    Compartilhar 163 Tweet 102
  • O Que é Amostragem e Quantização no Processamento de Imagens

    8 compartilhamentos
    Compartilhar 3 Tweet 2
  • Processamento de Nuvens de Pontos com Open3D e Python

    44 compartilhamentos
    Compartilhar 18 Tweet 11
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    383 compartilhamentos
    Compartilhar 153 Tweet 96
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
Green Card aprovado por habilidades extraordinárias em Data Science

Green Card aprovado por habilidades extraordinárias em Data Science

julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

janeiro 25, 2025

Seguir

  • Aqui nós 🇺🇸, a placa é sua. Quando você troca o carro,  por exemplo, você mesmo tira a sua placa do carro vendido e instala a parafusa no carro novo.

Por exemplo, hoje eu vi aqui no “Detran” dos Estados Unidos, paguei a trasnferência do title do veículo, e já comprei minha primeira placa. 

Tudo muito fácil e rápido. Foi menos de 1 hora para resolver toda a burocracia! #usa🇺🇸 #usa
  • Como um carro autônomo "enxerga" o mundo ao redor?

Não há olhos nem intuição, apenas sensores e matemática. Cada imagem capturada passa por um processo rigoroso: amostragem espacial, quantização de intensidade e codificação digital. 

Esse é o desafio, representar um objeto 3D do mundo real, em pixels que façam sentido para a Inteligência Artificial.

🚗📷 A visão computacional é a área mais inovadora do mundo!

Comente aqui se você concorda.

#carrosautonomos #inteligenciaartificial #IA #visãocomputacional
  • 👁️🤖Visão Computacional: a área mais inovadora do mundo! Clique no link da bio e se inscreva na PÓS EM VISÃO COMPUTACIONAL E DEEP LEARNING! #machinelearning #datascience #visãocomputacional
  • E aí, Sergião @spacetoday Você tem DADO em casa? 😂😂

A pergunta pode ter ficado sem resposta no dia. Mas afinal, o que são “dados”?

No mundo de Data Science, dados são apenas registros brutos. Números, textos, cliques, sensores, imagens. Sozinhos, eles não dizem nada 

Mas quando aplicamos técnicas de Data Science, esses dados ganham significado. Viram informação.

E quando a informação é bem interpretada, ela se transforma em conhecimento. Conhecimento gera vantagem estratégica 🎲

Hoje, Data Science não é mais opcional. É essencial para qualquer empresa que quer competir de verdade.

#datascience #cientistadedados #machinelearning
  • 🎙️ Corte da minha conversa com o Thiago Nigro, no PrimoCast #224

Falamos sobre por que os dados são considerados o novo petróleo - para mim, dados são o novo bacon!

Expliquei como empresas que dominam a ciência de dados ganham vantagem real no mercado. Não por armazenarem mais dados, mas por saberem o que fazer com eles.

Também conversamos sobre as oportunidades para quem quer entrar na área de tecnologia. Data Science é uma das áreas mais democráticas que existem. Não importa sua idade, formação ou cidade. O que importa é a vontade de aprender.

Se você quiser ver o episódio completo, é só buscar por Primocast 224.

“O que diferencia uma organização de outra não é a capacidade de armazenamento de dados; é a capacidade de seu pessoal extrair conhecimento desses dados.”

#machinelearning #datascience #visãocomputacional #python
  • 📸 Palestra que realizei no palco principal da Campus Party #15, o maior evento de tecnologia da América Latina!

O tema que escolhi foi "Computação Espacial", onde destaquei as inovações no uso de visão computacional para reconstrução 3D e navegação autônoma.

Apresentei técnicas como Structure-from-Motion (SFM), uma técnica capaz de reconstruir cidades inteiras (como Roma) usando apenas fotos publicadas em redes sociais, e ORB-SLAM, usada por drones e robôs para mapeamento em tempo real.

#visãocomputacional #machinelearning #datascience #python
  • ⚠️❗ Não deem ideia para o Haddad! 

A França usou Inteligência Artificial para detectar mais de 20 mil piscinas não declaradas a partir de imagens aéreas.

Com modelos de Deep Learning, o governo identificou quem estava devendo imposto... e arrecadou mais de €10 milhões com isso.

Quer saber como foi feito? Veja no post completo no blog do Sigmoidal: https://sigmoidal.ai/como-a-franca-usou-inteligencia-artificial-para-detectar-20-mil-piscinas/

#datascience #deeplearning #computerVision #IA
  • Como aprender QUALQUER coisa rapidamente?

💡 Comece com projetos reais desde o primeiro dia.
📁 Crie um portfólio enquanto aprende. 
📢 E compartilhe! Poste, escreva, ensine. Mostre o que está fazendo. Documente a jornada, não o resultado.

Dois livros que mudaram meu jogo:
-> Ultra Aprendizado (Scott Young)
-> Uma Vida Intelectual (Sertillanges)

Aprenda em público. Evolua fazendo.

#ultralearning #estudos #carreira
  • Como eu usava VISÃO COMPUTACIONAL no Centro de Operações Espaciais, planejando missões de satélites em situações de desastres naturais.

A visão computacional é uma fronteira fascinante da tecnologia que transforma a forma como entendemos e respondemos a desastres e situações críticas. 

Neste vídeo, eu compartilho um pouco da minha experiência como Engenheiro de Missão de Satélite e especialista em Visão Computacional. 

#VisãoComputacional #DataScience #MachineLearning #Python
  • 🤔 Essa é a MELHOR linguagem de programação, afinal?

Coloque sua opinião nos comentários!

#python #datascience #machinelearning
  • 💘 A história de como conquistei minha esposa... com Python!

Lá em 2011, mandei a real:

“Eu programo em Python.”
O resto é história.
  • Para rotacionar uma matriz 2D em 90°, primeiro inverto a ordem das linhas (reverse). Depois, faço a transposição in-place. Isso troca matrix[i][j] com matrix[j][i], sem criar outra matriz. A complexidade segue sendo O(n²), mas o uso de memória se mantém O(1).

Esse padrão aparece com frequência em entrevistas. Entender bem reverse + transpose te prepara para várias variações em matrizes.

#machinelearning #visaocomputacional #leetcode
  • Na última aula de estrutura de dados, rodei um simulador de labirintos para ensinar como resolver problemas em grids e matrizes.

Mostrei na prática a diferença entre DFS e BFS. Enquanto a DFS usa stacks, a BFS utiliza a estrutura de fila (queue). Cada abordagem tem seu padrão de propagação e uso ideal.

#machinelearning #visaocomputacional #algoritmos
  • 🔴 Live #2 – Matrizes e Grids: Fundamentos e Algoritmos Essenciais

Na segunda aula da série de lives sobre Estruturas de Dados e Algoritmos, o foco será em Matrizes e Grids, estruturas fundamentais em problemas de caminho, busca e representação de dados espaciais.

📌 O que você vai ver:

Fundamentos de matrizes e grids em programação
Algoritmos de busca: DFS e BFS aplicados a grids
Resolução ao vivo de problemas do LeetCode

📅 Terça-feira, 01/07, às 22h no YouTube 
🎥 (link nos Stories)

#algoritmos #estruturasdedados #leetcode #datascience #machinelearning
  • 💡 Quer passar em entrevistas técnicas?
Veja essa estratégia para você estudar estruturas de dados em uma sequência lógica e intuitiva.
⠀
👨‍🏫 NEETCODE.io
⠀
🚀 Marque alguém que também está se preparando!

#EntrevistaTecnica #LeetCode #MachineLearning #Data Science
  • Live #1 – Arrays & Strings: Teoria e Prática para Entrevistas Técnicas

Segunda-feira eu irei começar uma série de lives sobre Estruturas de Dados e Algoritmos. 

No primeiro encontro, falarei sobre um dos tipos de problemas mais cobrados em entrevistas: Arrays e Strings.

Nesta aula, você vai entender a teoria por trás dessas estruturas, aprender os principais padrões de resolução de problemas e aplicar esse conhecimento em exercícios selecionados do LeetCode.

📅 Segunda-feira, 23/06, às 21h no YouTube

🎥 (link nos Stories)

#machinelearning #datascience #cienciadedados #visãocomputacional
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.