fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

PrimoCast: Thiago Nigro e Carlos Melo conversam sobre Data Science

Dizem que os dados são o novo petróleo da humanidade, e agora você vai ver por que isso é verdade. Descubra também as oportunidades para a carreira de Cientista de Dados em 2023.

Carlos Melo por Carlos Melo
janeiro 5, 2023
em Carreira, Data Science, Entrevistas
0
35
COMPARTILHAMENTOS
1.2k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Tenho a satisfação de anunciar que o Sigmoidal chegou até um dos maiores podcasts do Brasil, o Primocast. Nesse bate-papo com o Thiago Nigro (o Primo Rico), Rodrigo Gianotto, Kaique e Lucão, todos do Grupo Primo, saíram inúmeros insights sobre como os dados podem ajudar o seu negócio a prosperar, crescer e vender ainda mais.

Além disso, conversamos muito sobre o mercado de trabalho de tecnologia atual, as oportunidades para quem quer começar uma nova carreira do absoluto zero e qual o caminho para conquistar uma vaga de cientista de dados em 2023. Como você vai ver, Data Science não é apenas a área mais inovadora do mundo, mas também a mais democrática, pois independe da sua idade ou formação.

Participação do episódio 224 do Primocast

1 de 6
- +
GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro

A era do Data Science

A frase que diz que dados são o novo petróleo é creditada ao matemático Clive Humby, porém ganhou popularidade após uma publicação da revista The Economist, em 2017.

“Data is the new oil.”

Clive Humby

Se essa comparação parece desproporcional ou inadequada para você, não deveria. Se você parar para analisar o papel crítico que os dados assumiram, praticamente o de uma força motriz para a economia digital, você verá que é apenas um retrato fiel do cenário que vem se desenhando ao longo dos últimos anos.

Na última década, as empresas que adotaram um modelo de decisão baseado em dados (data-driven decision) assumiram o topo do ranking das mais valiosas corporações do mundo. 

A verdade é que nunca antes a humanidade produziu tantos dados como agora. A título de curiosidade, a cada dois dias a população mundial cria a mesma quantidade de dados criados do início da civilização humana até 2003.

Como ilustração, Thiago Nigro cita alguns números sobre as redes sociais:

  • em 1 minuto, os usuários do Twitter enviam 473 mil tweets;
  • em 1 minuto, os usuários do Instagram postam 49 mil fotos;
  • em 1 minuto, o LinkedIn ganha 120 novos usuários;
  • a cada 1 segundo, o Google processa mais de 40 mil pesquisas; e
  • 1,5 bilhão de pessoas estão ativas no Facebook.

Que estamos na era da informação, dos dados, não é muito novidade para ninguém. Afinal de contas, o que são dados?

Dados são o novo bacon

De acordo com a Wikipedia, “Os dados são uma coleção de valores discretos que transmitem informações, descrevendo quantidade, qualidade, fatos, estatísticas, outras unidades básicas de significado, ou simplesmente sequências de símbolos que podem ser posteriormente interpretados.”

Em uma definição mais prática (e não tão acadêmica), dados são, por exemplo, fotos digitais, arquivos de texto, arquivos de áudio ou arquivos do Excel. Organizados em estruturas que fornecem um contexto e significado adicionais, são usados em pesquisas científicas, no mercado financeiro e praticamente qualquer forma de atividade organizacional que você consiga imaginar.

A partir de dados, gera-se inteligência. Fonte: Mariana Carvalho

Porém, dados sozinhos não significam nada! Assim como o petróleo bruto que não passou pela refinaria ainda, dados devem ser organizados, processados e analisados a fim de se tornarem informação. Essa informação, ao ser estruturada e colocada na forma correta, deve se transformar em conhecimento, o qual, aplicado da maneira correta, será convertido em inteligência estratégica para a empresa.

Para percorrer esse caminho de transformação, temos, no nosso arsenal, técnicas e ferramentas de Data Science — a arte de “transformar dados em vantagem estratégica”. Chegando ao final do texto, você quer saber a minha opinião sincera sobre a controversa frase do Clive Humby? Para mim, dados não são o novo petróleo. Dados são o novo Bacon — o que é muito melhor!

“O que diferencia uma organização de outra não é a capacidade de armazenamento de dados; é a capacidade de seu pessoal extrair conhecimento desses dados.”

Carlos Melo

O Que É Data Science

Data Science envolve os princípios, processos e técnicas que permitem entender fenômenos por meio de análises de dados. Porém, obviamente, não é possível definir Ciência dos Dados ignorando o contexto de sua aplicação.

Dentro do escopo trabalhado no Primocast, eu diria que o objetivo do Data Science é o aprimoramento do processo decisório dentro da organização e todos os processos associados. Aqui no Brasil, a prática de decidir com base na análise dos dados contrasta fortemente com a cultura quase que enraizada do “eu”presa, em que as decisões são muitas vezes passionais ou amparadas pela “intuição” do líder.

 

Aula sobre Data Science para o mercado financeiro na Finclass
Aula sobre Data Science para o mercado financeiro na Finclass

Respondendo à pergunta do Nigro sobre que dados precisariam ser coletados para uma plataforma de finanças (a exemplo da Finclass), expliquei que, em primeiro lugar, deve-se ter a compreensão inteira dessa plataforma para fazer uma estruturação real do problema. Ou seja, deve-se entender como aquele negócio funciona, do que ele é composto, seus objetos, para saber que dados procurar para melhorar o negócio.

Além dessa visão mais macro, outros aspectos foram citados: para os assinantes, é preciso saber o NPS (Net Promoter Score, que avalia a fidelidade dos clientes à empresa) e a taxa de Churn (taxa de cancelamento), identificando os padrões do comportamento de pessoas que deixaram de assinar a plataforma.

Por exemplo, há quanto tempo a pessoa não acessa a plataforma, como ela navega dentro da plataforma (que conteúdos consome e tal) ou quanto tempo ela permanece consumindo um dado conteúdo. Porque é muito mais fácil (barato), se pararmos para raciocinar, oferecer alguma vantagem para esse cliente propenso a cancelar do que fazer com que uma pessoa de fora assine a plataforma.

Somado a isso, Rodrigo cita os aspectos relacionados ao login na plataforma (quando o assinante entra, que horário, por quanto tempo lá permanece) e o Lifetime Value (LTV).

“Tudo começa pela análise dos dados. Possuindo esses dados, buscas são feitas em cima deles para responder uma pergunta de negócio. Não adianta só a análise; deve-se responder ao negócio, o que o negócio está exigindo.”

Rodrigo Gianotto

Rodrigo Gianotto divide a Ciência de Dados (Data Science) em três segmentos: análise de dados, engenharia de dados e uma área voltada à construção de modelos predicativos:

  1. A análise de dados é o início, em que o analista vai utilizar a linguagem SQL para realizar as buscas nos banco de dados, analisar e gerar insights. O papel do analista é o de trazer conhecimento que estava “escondido” naquela multidão de dados soltos.
  2. Já na engenharia de dados, o engenheiro de dados tem o papel de, por exemplo, extrair dados de locais diferentes e alocá-los no mesmo local, o qual será utilizado pelo analista de dados.
  3. Por fim, sobre a área mais avançada, é aquela relacionada com Inteligência Artificial, Machine Learning. Essa última área é a mais inovadora, citando como exemplo as recomendações de séries e filmes da Netflix: algo dinâmico, que toma decisões a todo instante para fazer recomendações personalizadas.

Tomando Decisões Baseadas Em Dados

Por que os dados são utilizados? Claro, para tomar decisões mais acertadas. Na verdade, há uma explicação biológica, que tem a ver com uma própria limitação do cérebro humano.

“Tudo é óbvio desde que você saiba a resposta.”

Ducan J. Watts

A forma de ver o mundo das pessoas é enviesada (preferências e tal); as experiências pessoais são muito relacionadas com relações de causa-efeito (pode ser uma mera coincidência ou uma relação de muitas variáveis inter-relacionadas); a limitação da memória mesmo (não conseguimos lembrar ou relacionar os inúmeros eventos que presenciamos); e além da óbvia não onipresença (ao contrário do Google, não temos o registro dos acontecimentos em todos os confins do planeta).

Para ilustrar como os dados são utilizados estrategicamente no mercado, eu citei um exemplo com a Walmart. Essa empresa descobriu algo nada óbvio: como suprimento para lidar com furacões anunciados (relativamente comum nos Estados Unidos da América), seus consumidores compravam muito tortilhas de morango (um doce). Sabendo disso, essa empresa então abastecia suas lojas com esse produto nesses períodos.

Mais outro exemplo e também com a Walmart. Ela, analisando dados, chegou à conclusão de que a cerveja ao lado de fraldas aumenta a venda de cerveja. Dessa forma, colocaram estoques de cerveja perto do local onde estavam armazenadas as fraldas.

Visita ao Grupo Primo com toda a família
Visita ao Grupo Primo com toda a família

No entanto, nem tudo são flores. Como Thiago Nigro disse, dados, isoladamente, são inócuos, e dependerá de alguém experiente para saber lidar com eles para gerar insights e fundamentar decisões. Além disso, muitos dados pode ser um problema.

 A partir de muitas entradas (dados), algoritmos são capazes identificar padrões. Esses padrões não estavam atrás de um vidro limpo; na verdade, foi necessário analisar muitos dados para se chegar a essas conclusões. 

Em pleno 2022, com todo o acesso a informação, o mundo inteiro conectado, realmente não é muito responsável tomar determinadas decisões baseadas em pura intuição. Como falaram Lucas e Kaique no Primocast, os dois passaram a utilizar os dados coletados para direcionar suas decisões, como no caso do YouTube.

Nessa plataforma, eles testam como certos aspectos (por exemplo, título e thumbnail) interferem no consumo pelo seu público (visualizações), e suas futuras decisões são baseadas nesses resultados.

Assista ao episódio completo do Primocast

Eu quero convidá-lo a assistir ao episódio completo do Primocast sobre Data Science e Gestão de Dados. Nele, você vai acompanhar a visão e insights das pessoas que estão à frente de um negócio que fatura centenas de milhões de reais por ano e que possui uma base de mais de 200 mil assinantes.

Para aqueles que querem se preparar para conquistar uma vaga em tecnologia, nada como entender quais habilidades e tecnologias as maiores empresas do país buscam em um candidato.

Por fim, eu só quero agradecer pela oportunidade de ter participado de mais um evento no Grupo Primo, empresa que admiro e pela qual tenho um profundo carinho. Em todas as vezes que os visitei em São Paulo, pude acompanhar como eles são diferenciados em relação ao restante do mercado. Não há dúvidas de que serão cada vez maiores.

Um forte abraço a todo o time do Grupo Primo!

Carlos Melo

Compartilhar2Compartilhar14Enviar
Post Anterior

Como usar o DALL-E 2 para gerar imagens a partir de textos

Próximo Post

Como escrever uma Cover Letter poderosa para Data Science

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Carlos Melo da Pós Graduação em Data Science do Sigmoidal
Aeroespacial

Oportunidades no Setor Espacial para Cientistas de Dados

por Carlos Melo
janeiro 15, 2025
O que é Visão Computacional - Podcast Data Hackers
Carreira

O que é Visão Computacional — Data Hackers Episódio #92

por Carlos Melo
agosto 12, 2024
Próximo Post
Data Science no exterior - como fazer uma Cover Letter

Como escrever uma Cover Letter poderosa para Data Science

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    511 compartilhamentos
    Compartilhar 204 Tweet 128
  • Por que o ChatGPT mente para você?

    9 compartilhamentos
    Compartilhar 4 Tweet 2
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    424 compartilhamentos
    Compartilhar 170 Tweet 106
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    397 compartilhamentos
    Compartilhar 159 Tweet 99
  • Processamento de Nuvens de Pontos com Open3D e Python

    56 compartilhamentos
    Compartilhar 22 Tweet 14
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
Por que o ChatGPT mente para você?

Por que o ChatGPT mente para você?

setembro 16, 2025
Green Card aprovado por habilidades extraordinárias em Data Science

Green Card aprovado por habilidades extraordinárias em Data Science

julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025

Seguir

  • 💰 Você sabe o que faz e quanto ganha um cientista de dados?

Ser Cientista de Dados significa trabalhar com inteligência artificial, estatística e programação para transformar dados em decisões que movimentam negócios e impactam bilhões de pessoas.

É a função que dá vida a recomendações personalizadas, modelos preditivos e sistemas inteligentes que mudam a forma como empresas inovam.

E não é apenas fascinante...

💼💰 É também uma das carreiras mais bem remuneradas da área de tecnologia!

Se você quer uma carreira com futuro, relevância e excelente retorno financeiro, Data Science é o caminho certo!

#cientistadedados #datascience #python
  • Você colocaria fraldas do lado das cervejas no seu supermercado? 🤔

Parece estranho, mas foi exatamente essa descoberta que mudou as vendas do Walmart.

Os cientistas de dados da empresa analisaram milhões de transações com uma técnica de Data Mining que identifica padrões de compra e combinações inesperadas de produtos.

Então, usando algoritmos da Data Science, cruzaram dados de horário, perfil de cliente e itens comprados juntos.

Encontraram algo curioso: homens que passavam no mercado após as 18h para comprar fraldas, muitas vezes no caminho de casa, também compravam cerveja 🍺.

O Walmart testou a hipótese: colocou fraldas perto da seção de cervejas.

O resultado? As vendas de cerveja dispararam. 🚀

Esse é um exemplo clássico de como Data Science gera impacto direto no negócio.

Não é sobre algoritmos complexos apenas; é sobre transformar dados históricos em decisões inteligentes e lucrativas.

#datascience #cientistadedados #machinelearning
  • Conheça as formações da Academia Sigmoidal.

Nossos programas unem rigor acadêmico, prática aplicada e dupla certificação internacional, preparando você para atuar em Data Science, Visão Computacional e Inteligência Artificial com impacto real no mercado.

🤖 Pós-Graduação em Data Science: Forma Cientistas de Dados e Engenheiros de Machine Learning do zero, com Python, estatística e projetos práticos do mundo real.

👁️ Pós-Graduação em Visão Computacional: Especialize-se em processamento de imagens, Deep Learning, redes neurais e navegação autônoma de drones, tornando-se Engenheiro de Visão Computacional ou Engenheiro de Machine Learning.

📊 MBA em Inteligência Artificial: Voltado a profissionais de qualquer área, ensina a aplicar IA estrategicamente em negócios, usando automação, agentes de IA e IA generativa para inovação e competitividade.

Além do título de Especialista reconhecido pelo MEC, você ainda conquista uma Dupla Certificação Internacional com o STAR Research Institute (EUA).

💬 Interessado em dar o próximo passo para liderar no mercado de tecnologia? Me envie uma mensagem e eu te ajudo pessoalmente com a matrícula.

#DataScience #InteligenciaArtificial #VisaoComputacional
  • Treinar um modelo significa encontrar um bom conjunto de parâmetros. Esse conjunto é definido pela função objetivo, também chamada de função de perda. 👀

O gradient descent é o algoritmo que ajusta esses parâmetros passo a passo. Ele calcula a direção de maior inclinação da função de perda e move o modelo para baixo nessa curva. ⬇️

Se o parâmetro é o peso que multiplica X ou o bias que desloca a reta, ambos são atualizados. Cada iteração reduz o erro, aproximando o modelo da solução ótima.

A intuição é simples: sempre que a função de perda é maior, o gradiente aponta o caminho. O algoritmo segue esse caminho até que não haja mais descida possível. 🔄 

#inteligênciaartificial #datascience #machinelearning
  • Qual a melhor linguagem? PYTHON ou R?

Diretamente do túnel do tempo! Resgatei esse vídeo polêmico de 2021, quem lembra??

#DataScience #Python #R #Programação
  • 🎥 Como começar uma CARREIRA como CIENTISTA DE DADOS

Você já pensou em entrar na área que mais cresce e que paga os melhores salários no mundo da tecnologia?

Domingo você vai descobrir o que realmente faz um Cientista de Dados, quais são as habilidades essenciais e o passo a passo para dar os primeiros passos na carreira.

Eu vou te mostrar um mapa para você sair do zero e se preparar para trabalhar com Data Science em 2026.

📅 Domingo, 28 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

Clique no link dos Stories e receba o link da aula ao vivo!

#datascience #machinelearning #cientistadedados
  • VISÃO COMPUTACIONAL está no centro de um dos avanços mais impressionantes da exploração espacial recente: o pouso autônomo da missão Chang’e-5 na Lua. 🚀🌑

Durante a descida, câmeras de alta resolução e sensores a laser capturavam continuamente o relevo lunar, enquanto algoritmos embarcados processavam as imagens em tempo real para identificar crateras e obstáculos que poderiam comprometer a missão.

Esses algoritmos aplicavam técnicas de detecção de bordas e segmentação, aproximando crateras por elipses e cruzando a análise visual com dados de altímetros. Assim, a IA conseguia selecionar regiões planas e seguras para o pouso, ajustando a trajetória da nave de forma autônoma. 

Esse processo foi indispensável, já que a distância entre Terra e Lua gera atraso de comunicação que inviabiliza controle humano direto em tempo real.

Esse caso ilustra como IA embarcada está deixando de ser apenas uma ferramenta de análise pós-missão para se tornar parte crítica das operações espaciais autônomas em tempo real — um passo essencial para missões em Marte, asteroides e no lado oculto da Lua.

(PS: Vi o Sérgio Sacani, do @spacetoday , postando isso primeiro.)

#visaocomputacional #machinelearning #datascience
  • 🔴Aprenda a MATEMÁTICA por Trás do MACHINE LEARNING

Você já se perguntou como as máquinas aprendem?🤖 

A resposta está na matemática que dá vida ao Machine Learning. E neste vídeo, você vai aprender os conceitos fundamentais que sustentam os algoritmos de inteligência artificial, de forma clara e acessível.

Mais do que apenas fórmulas, a ideia é mostrar como cada peça matemática se conecta para transformar dados em aprendizado. Se você deseja compreender a lógica por trás do funcionamento das máquinas, essa aula é um ótimo ponto de partida.

📅 Domingo, 21 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

#machinelearning #datascience #cientistadedados
  • 🚀 As matrículas estão abertas!
Depois de quase 1 ano, a nova turma da Pós-Graduação em Data Science chegou.

NOVIDADE: agora com Dupla Certificação Internacional:
🇧🇷 Diploma de Especialista reconhecido pelo MEC
🇺🇸 Certificado do STAR Research Institute (EUA)

Aprenda Data Science na prática, domine Machine Learning e IA, e conquiste reconhecimento no Brasil e no mundo.

2025 pode ser o ano em que você dá o passo decisivo para se tornar Cientista de Dados.

🔗 Clique no link da bio e reserve sua vaga!
#datascience #cienciadedados #python
  • Por que o CHATGPT MENTE PARA VOCÊ? 🤔

Já percebeu que o ChatGPT às vezes responde com confiança... mas está errado? 

Isso acontece porque, assim como um aluno em prova, ele prefere chutar do que deixar em branco.
Essas respostas convincentes, mas erradas, são chamadas de alucinações.

E o que o pesquisadores da OpenAI sugerem, é que esse tipo de comportamento aparece porque os testes que treinam e avaliam o modelo premiam o chute e punem a incerteza.

Então, da próxima vez que ele ‘inventar’ algo, lembre-se: não é pessoal, ele apenas for treinado dessa maneira!
#inteligênciaartificial #chatgpt #datascience
  • ChatGPT: um "estagiário de LUXO" para aumentar sua produtividade na programação.

 #programacao #copiloto #produtividade #streamlit #dashboard #tecnologia #devlife
  • Da série “Foi a IA que me deu”, vamos relembrar minha viagem pra Tromsø, na Noruega, 500 km acima da linha do Círculo Polar Ártico. 🌍❄️

No vídeo de hoje, você vai aprender o que é um "fiorde"! 

Como você dormia sem saber o que era um fiorde?? 😅
  • Qual LINGUAGEM DE PROGRAMAÇÃO é usada na TESLA?

A Tesla utiliza diferentes linguagens de programação em cada fase do ciclo de desenvolvimento. 

O treinamento das redes neurais convolucionais (CNN) é feito em Python, aproveitando bibliotecas científicas e a rapidez de prototipagem. Isso permite testar arquiteturas de CNN com agilidade no ambiente de pesquisa.

Já a implementação embarcada ocorre em C++, garantindo alta performance. Como os modelos de CNN precisam responder em tempo real, o C++ assegura baixa latência para tarefas como detectar pedestres e interpretar placas de trânsito.

Com isso, a Tesla combina Python para pesquisa e C++ para produção, equilibrando inovação e velocidade em sistemas críticos de visão computacional.

#python #machinelearning #inteligenciaartificial
  • Aproveitando o domingo… vamos relaxar um pouco e falar sobre cinema 🎬

Em
  • Já se perguntou como conseguimos distinguir intuitivamente um gato de um cachorro, mesmo com tantas semelhanças físicas? 

Para nós, essa identificação é quase automática.

Na filosofia aristotélica, a inteligência é um atributo da alma: o mundo real é captado pelos sentidos, transformado em imagens na imaginação (fantasmas), e organizado em conceitos que nos permitem compreender a realidade de forma imediata.

Já as máquinas não têm alma nem intuição. Para aprender essa mesma tarefa, precisam decompor o problema em camadas hierárquicas: 

Nas primeiras, redes neurais profundas extraem padrões simples (bordas, texturas); nas intermediárias, formas mais abstratas (orelhas, olhos, focinho); e apenas nas finais esses elementos são combinados em conceitos de alto nível como “gato” ou “cachorro”.

Enquanto nós chegamos ao entendimento de forma direta, a inteligência artificial depende de sucessivas representações para “fazer sentido” do mundo. 🤖

#inteligênciaartificial #redesneurais #deepLearning #filosofia #tecnologia
  • INTELIGÊNCIA ARTIFICIAL se tornou a carreira mais promissora atualmente.

Este mercado, em constante crescimento global, oferece oportunidades de trabalho remoto, seja como freelancer ou contratado por empresas. 

Para quem busca uma carreira flexível e em expansão, a área de DATA SCIENCE / IA pode ser o caminho ideal. 

Afinal, você consgue me dizer quais outras áreas oferecem tamanha versatilidade e crescimento? 

#cienciadedados #python #inteligenciaartificial #mercadodetrabalho #tecnologia #oportunidades
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.