fbpx
Sigmoidal
  • Home
  • Data Science
    Data Science no exterior - como fazer uma Cover Letter

    Como escrever uma Cover Letter poderosa para Data Science

    GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro

    Aprenda Data Science ou pague o preço de uma decisão errada

    Como a França usou Inteligência Artificial para detectar 20 mil piscinas

    Como a França usou Inteligência Artificial para detectar 20 mil piscinas

    ChatGPT: A Inteligência Artificial que vai escrever seus códigos

    ChatGPT: A Inteligência Artificial que vai escrever seus códigos

    7 livros essenciais para aprender Data Science em 2023

    7 livros essenciais para aprender Data Science em 2023

    Como a banda Metallica usa Data Science

    Como a banda Metallica usa Data Science

    Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

    Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

    Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

    Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

    Python para análise de ações e investimentos

    Python para análise de ações e investimentos

    Gerando amostras para modelos de Deep learning no ArcGIS Pro

    Gerando amostras para modelos de Deep learning no ArcGIS Pro

    7 Livros de Data Science em 2021

    7 Livros de Data Science em 2021

    Quanto ganha um Cientista de Dados?

    Quanto ganha um Cientista de Dados?

    Trending Tags

    • Python
      Fundamentos da Formação da Imagem

      Fundamentos da Formação da Imagem

      Como usar o DALL-E 2 para gerar imagens a partir de textos

      Como usar o DALL-E 2 para gerar imagens a partir de textos

      aprenda python do zero - curso gratuito

      Projeto Python: um plano à prova de desculpas

      Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

      Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

      Projeto Python do Zero: evento 100% gratuito

      Projeto Python do Zero: evento 100% gratuito

      Aprenda Python e se destaque no mercado

      Aprenda Python e se destaque no mercado

      Python para análise de ações e investimentos

      Python para análise de ações e investimentos

      Como fazer gráficos rotulados em Python

      Como fazer gráficos rotulados em Python

      Trabalhando com Dados Desbalanceados

      Trabalhando com Dados Desbalanceados

      Trending Tags

      • Visão Computacional
        Fundamentos da Formação da Imagem

        Fundamentos da Formação da Imagem

        Como usar OpenCV e Python para calibrar câmeras

        Como usar OpenCV e Python para calibrar câmeras

        Como usar o DALL-E 2 para gerar imagens a partir de textos

        Como usar o DALL-E 2 para gerar imagens a partir de textos

        Crie um sistema de vigilância com drones e Deep Learning

        Crie um sistema de vigilância com drones e Deep Learning

        Detector de Fadiga usando Python

        Detector de Fadiga usando Python

        Redes Neurais Convolucionais com Python

        Redes Neurais Convolucionais com Python

        Reduzindo o Overfitting com Data Augmentation

        Reduzindo o Overfitting com Data Augmentation

        Redes Neurais Multicamadas com Python e Keras

        Redes Neurais Multicamadas com Python e Keras

        Trending Tags

        • Sobre Mim
        No Result
        View All Result
        • Home
        • Data Science
          Data Science no exterior - como fazer uma Cover Letter

          Como escrever uma Cover Letter poderosa para Data Science

          GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro

          Aprenda Data Science ou pague o preço de uma decisão errada

          Como a França usou Inteligência Artificial para detectar 20 mil piscinas

          Como a França usou Inteligência Artificial para detectar 20 mil piscinas

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          7 livros essenciais para aprender Data Science em 2023

          7 livros essenciais para aprender Data Science em 2023

          Como a banda Metallica usa Data Science

          Como a banda Metallica usa Data Science

          Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

          Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

          Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

          Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

          Python para análise de ações e investimentos

          Python para análise de ações e investimentos

          Gerando amostras para modelos de Deep learning no ArcGIS Pro

          Gerando amostras para modelos de Deep learning no ArcGIS Pro

          7 Livros de Data Science em 2021

          7 Livros de Data Science em 2021

          Quanto ganha um Cientista de Dados?

          Quanto ganha um Cientista de Dados?

          Trending Tags

          • Python
            Fundamentos da Formação da Imagem

            Fundamentos da Formação da Imagem

            Como usar o DALL-E 2 para gerar imagens a partir de textos

            Como usar o DALL-E 2 para gerar imagens a partir de textos

            aprenda python do zero - curso gratuito

            Projeto Python: um plano à prova de desculpas

            Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

            Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

            Projeto Python do Zero: evento 100% gratuito

            Projeto Python do Zero: evento 100% gratuito

            Aprenda Python e se destaque no mercado

            Aprenda Python e se destaque no mercado

            Python para análise de ações e investimentos

            Python para análise de ações e investimentos

            Como fazer gráficos rotulados em Python

            Como fazer gráficos rotulados em Python

            Trabalhando com Dados Desbalanceados

            Trabalhando com Dados Desbalanceados

            Trending Tags

            • Visão Computacional
              Fundamentos da Formação da Imagem

              Fundamentos da Formação da Imagem

              Como usar OpenCV e Python para calibrar câmeras

              Como usar OpenCV e Python para calibrar câmeras

              Como usar o DALL-E 2 para gerar imagens a partir de textos

              Como usar o DALL-E 2 para gerar imagens a partir de textos

              Crie um sistema de vigilância com drones e Deep Learning

              Crie um sistema de vigilância com drones e Deep Learning

              Detector de Fadiga usando Python

              Detector de Fadiga usando Python

              Redes Neurais Convolucionais com Python

              Redes Neurais Convolucionais com Python

              Reduzindo o Overfitting com Data Augmentation

              Reduzindo o Overfitting com Data Augmentation

              Redes Neurais Multicamadas com Python e Keras

              Redes Neurais Multicamadas com Python e Keras

              Trending Tags

              • Sobre Mim
              No Result
              View All Result
              Sigmoidal
              No Result
              View All Result

              Aplicações de Machine Learning nos Esportes

              rafael by rafael
              junho 7, 2022
              in Blog, Data Science, Machine Learning, Python
              0
              Home Blog
              12
              SHARES
              404
              VIEWS
              Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

              Você sabia que Machine Learning nos esportes já é uma realidade?

              A esta altura, com certeza você já ouviu dizer que os dados estão dominando o mundo. Já não é mais novidade que nós temos gerado mais dados do que jamais havíamos feito, e esse número está crescendo exponencialmente.

              Esse avanço já alcançou a maioria das áreas de negócio e de nossas vidas, e não mostra sinais de desacelerar.

              Machine Learning nos esportes e Análise de Dados

              Agora, vamos focar nos esportes, dando atenção especial ao Basquete. Desde sempre, estatísticas são parte fundamental dos esportes.

              Boxscores, relatórios de olheiros, entre outros, já são amplamente difundidos. Mas, esse é apenas o primeiro passo em uma longa jornada.

              Aqui, vamos analisar como Machine Learning e Ciência de Dados podem, e têm, impactado o Basquete.

              Primeiramente, é importante esclarecer que esse não é um tutorial de código. Aqui, proponho uma conversa, expondo as vastas oportunidades que Machine Learning traz para os esportes. Pense nisso como food for thought.

              Com isso em mente, vamos começar!

              Análise de Dados nos esportes

              Vamos começar com o básico. Em um projeto de Ciência de Dados, a análise exploratória tem um grande papel. Essa mentalidade não deve mudar ao abordarmos esportes.

              Entender cada um dos detalhes do jogo, sempre tendo em mente o contexto real, é o primeiro passo.

              Data Science e Machine Learning nos esportes

              Na NBA, existe algo chamado Advanced Stats (Estatísticas Avançadas, em tradução livre). Aqueles boxscores clássicos já não são mais suficientes.

              O resultado disso, foi a criação de novas métricas para serem analisadas, e entendermos como elas afetam os resultados dos jogos. Na NBA, essas métricas já estão sendo criadas e analisadas regularmente.

              Transformando dados em insights

              Após analisar seus dados minuciosamente, existem algumas outras coisas que podemos fazer.

              Anualmente, é proposto um desafio de Data Science no Kaggle, promovido pela NCAA e Google Cloud, com o objetivo de prever os resultados das partidas do March Madness, reveleando possíveis zebras, azarões, times Cinderella, entre outras coisas.

              Eles disponibilizam dados históricos do torneio, com diversas variáveis diferentes.

              Times de basquete podem utilizar dados reais dos torneios em que estão inseridos, e usar modelos preditivos para testar como eles estariam no campeonato caso melhorassem esse ou aquele atributo, ou adicionar determinado jogador ao time.

              Esse tipo de trabalho é excelente para olheiros, preparação para jogos contra um determinado time, avaliar o esforço e custo de novas estratégias táticas, e até mesmo determinar que habilidades os jogadores devem focar em melhorar, para se tornarem melhores jogadores.

              Visão Computacional aplicada aos esportes

              Todas as possibilidades mencionadas anteriormente são incríveis e funcionam maravilhosamente bem.

              Entretanto, se seu objetivo é realmente atingir o mais alto nível, este tem que ser seu objetivo: Visão Computacional está dominando o mundo, e já chegou aos esportes.

              Data Science e Machine Learning no Basquete
              Créditos: Simone Francia | https://www.youtube.com/watch?v=PEziTgHx4cA

              Na NBA, a empresa Kinexon é dona da maior fatia do mercado, e entrega o estado da arte em soluções para os times.

              Acesso em tempo real às condições físicas dos jogadores, previsão de fadiga, mensuração de novas variáveis sob demanda, etc. 

              Com esse tipo de tecnologia aplicado ao time, trabalhando para você e suas necessidades individuais, essas informações irão alimentar suas análises estatísticas e modelos de Machine Learning.

              Com certeza, isso irá levar sua performance para o próximo nível.

              Nem sempre está certo

              Se você é fã de basquete, provavelmente já viu essa foto abaixo na internet. Ela mostra a evolução dos arremessos tentados na NBA. Temos que dar crédito ao Houston Rockets por terem sido pioneiros em aplicar de forma extensiva Ciência De Dados na NBA.

              Créditos: Kirk Goldsberry | https://twitter.com/kirkgoldsberry/status/1217109175894831105

              Resumidamente, análises demonstraram que o arremesso de 2 pontos de média distância é um arremesso de baixo aproveitamento que não vale a pena ser tentado.

              O ideal, é arremessar bolas de 3, ou penetrar o garrafão para bandejas fáceis ou cavar faltas. Assista um jogo do Houston Rockets, vai ver isso em ação de forma maestral (Obrigado, James Harden).

              Os jogadores estão arremessando cada vez mais bolas de 3, de cada vez mais longe da cesta. O jogo está completamente diferente, e temos que culpar (ou agradecer?) a Ciência de Dados por isso.

              Tudo isso é muito legal e divertido até que te atinja.

              Carmelo Anthony teve passagem pelo Houston Rockets e isso quase custou sua carreira. Tendo sido um jogador extremamente dominante no começo dos anos 2000, Melo tinha como carro chefe seu arremesso de média distância.

              Após 10 dias com o time, eles o liberaram. Um jogador eleito 10 vezes como All-Star, elite da NBA, quase teve que se aposentar por causa do que análises estatísticas mostraram sobre ele. Se você quiser ler mais sobre essa história, clique aqui.


              Felizmente, ele conseguiu se recuperar, foi contratado pelo Portland Trailblazers, e recentemente acertou um arremesso no último segundo para vencer a partida, que, irônicamente, foi um arremesso longo de 2 pontos. Aos 0:21 do vídeo acima, você pode assistir esse belo arremesso.

              Isso significa que Analytics é ruim para o esporte?

              De forma alguma. Mas também não é tudo. Analise seus dados minuciosamente, analise os jogadores, use todos os modelos do mundo, mas sempre assista aos jogos, veja por si mesmo se os dados estão contando a história real.

              Com Visão Computacional nós podemos medir coisas que jamais haviam sido mensuradas, diminuido aquelas “coisas que a estatística não mostra” nos esportes, mas elas ainda existem.

              Uma reflexão sobre Data Science nos esportes

              Essa foi apenas uma breve conversa sobre o assunto, e como eu disse, é apenas uma reflexão.

              Espero que você tenha achado esse artigo interessante e inspirador, e caso tenha qualquer dúvida, ou apenas queira falar de basquete, conecte-se comigo no LinkedIn e confira meus projetos no GitHub. 

              Lá, inclusive, tenho uma proposta completa que apresentei a um time de Basquete, para implementar um projeto de Ciência De Dados na equipe. Você pode conferir o projeto na íntegra aqui.

              Para ler mais sobre Machine Learning e Basquete, recomendo esse post do Towards Data Science.

              Tags: ciencia de dadoscientista de dadosdata sciencedata science na práticaesportesmachine learning
              Previous Post

              Como Analisar Ações da Bolsa com Python

              Next Post

              Séries Temporais (Time Series) com Python

              rafael

              rafael

              Related Posts

              Fundamentos da Formação da Imagem
              Visão Computacional

              Fundamentos da Formação da Imagem

              by Carlos Melo
              março 22, 2023
              Como usar OpenCV e Python para calibrar câmeras
              Artigos

              Como usar OpenCV e Python para calibrar câmeras

              by Carlos Melo
              março 17, 2023
              Data Science no exterior - como fazer uma Cover Letter
              Artigos

              Como escrever uma Cover Letter poderosa para Data Science

              by rafael
              janeiro 16, 2023
              GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro
              Data Science

              Aprenda Data Science ou pague o preço de uma decisão errada

              by Carlos Melo
              janeiro 7, 2023
              Como usar o DALL-E 2 para gerar imagens a partir de textos
              Deep Learning

              Como usar o DALL-E 2 para gerar imagens a partir de textos

              by Carlos Melo
              dezembro 27, 2022
              Next Post
              Séries Temporais (Time Series) com Python

              Séries Temporais (Time Series) com Python

              Deixe um comentário Cancelar resposta

              O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

              Destaques Sigmoidal

              Como usar OpenCV e Python para calibrar câmeras

              Como usar OpenCV e Python para calibrar câmeras

              março 17, 2023
              7 Livros de Data Science em 2021

              7 Livros de Data Science em 2021

              agosto 3, 2022
              Redes Neurais Multicamadas com Python e Keras

              Redes Neurais Multicamadas com Python e Keras

              junho 8, 2022

              Navegar por Categoria

              • Artigos
              • Blog
              • Carreira
              • Colunistas
              • Cursos
              • Data Science
              • Deep Learning
              • Destaques
              • Entrevistas
              • Inglês
              • Iniciantes
              • Inteligência Artificial
              • Livros
              • Machine Learning
              • Matemática
              • NFT
              • Notícias
              • Projetos
              • Python
              • Teoria
              • Tutoriais
              • Visão Computacional
              • Youtube

              Navegar por Tags

              cancer carreira cientista de dados cnn Cursos dados desbalanceados data science data science na prática decision tree deep learning gis gpt-3 gráficos healthcare iniciantes jupyter kaggle keras machine learning matplotlib medicina mnist nft nlp opencv pandas personal branding plotly portfólio profissão python random forest redes neurais redes neurais convolucionais regressão logística seaborn sklearn tensorflow titanic vagas visualização de dados visão computacional vídeo youtube árvore de decisão
              Sigmoidal

              O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

              Seguir no Instagram

              Categorias

              • Artigos
              • Blog
              • Carreira
              • Colunistas
              • Cursos
              • Data Science
              • Deep Learning
              • Destaques
              • Entrevistas
              • Inglês
              • Iniciantes
              • Inteligência Artificial
              • Livros
              • Machine Learning
              • Matemática
              • NFT
              • Notícias
              • Projetos
              • Python
              • Teoria
              • Tutoriais
              • Visão Computacional
              • Youtube

              Navegar por Tags

              cancer carreira cientista de dados cnn Cursos dados desbalanceados data science data science na prática decision tree deep learning gis gpt-3 gráficos healthcare iniciantes jupyter kaggle keras machine learning matplotlib medicina mnist nft nlp opencv pandas personal branding plotly portfólio profissão python random forest redes neurais redes neurais convolucionais regressão logística seaborn sklearn tensorflow titanic vagas visualização de dados visão computacional vídeo youtube árvore de decisão

              Artigos Recentes

              • Fundamentos da Formação da Imagem
              • Como usar OpenCV e Python para calibrar câmeras
              • Como escrever uma Cover Letter poderosa para Data Science

              © 2023 Sigmoidal - Aprenda Data Science e Python na prática.

              No Result
              View All Result
              • Home
              • Artigos
              • Tutoriais
              • YouTube
              • Contato

              © 2023 Sigmoidal - Aprenda Data Science e Python na prática.

              Welcome Back!

              Login to your account below

              Forgotten Password?

              Retrieve your password

              Please enter your username or email address to reset your password.

              Log In

              Add New Playlist