“Você pode correr, mas não pode se esconder” é uma frase marcante de filmes antigos de terror, como o clássico “Sexta-Feira 13”, do matador impiedoso Jason Voorhees. Digamos que a Direção-Geral das Finanças Públicas da França (DGFiP) colocou essa frase em prática ano passado, mas para a detecção de algo que esse país entende muito: piscinas.
Segundo dados da página de dados Statista, havia 3,2 milhões de piscinas privadas na França em 2020 – número que aumentou e muito durante a pandemia de COVID-19, período em que as pessoas ficaram mais em suas casas –, fazendo esse país o segundo com o maior número dessas construções per capita do mundo.
Em função desse grande número dessas construções, da arrecadação e do uso da água nesse país (a França enfrenta sua pior seca, que deixou mais de 100 comunidades sem água potável), as autoridades fiscais desse país resolveram regularizar a situação das casas ao fisco.
Usando técnicas de Data Science e algoritmos de Deep Learning, o governo francês conseguiu encontrar mais de 20 mil piscinas ocultas, e cobrar €10 milhões em impostos (equivalente a R$ 50 milhões).
Para solucionar esse problema, a DGFiP lançou mão da Inteligência Artificial, localizando mais de 20 mil piscinas não declaradas ou parcialmente declaradas ao fisco francês (segundo as leis tributárias desse país, deve-se declarar as piscinas, afinal elas aumentam o valor do imóvel), permitindo que o país arrecadasse mais de 10 milhões de euros.
O software de Inteligência Artificial usado pelo governo
Isso só foi possível graças ao “foncier innovant” (em português, terra inovadora), dispositivo desenvolvido pela multinacional francesa Capgemini (uma gigante em consultoria, serviços de tecnologia e transformação digital) em conjunto com a quase nada conhecida Google.
“A IA é, sem dúvida, o novo combustível para a economia moderna.”
John Clancy, de Enterprise Digital Advisory Forum
Ele usa técnicas de Data Science e algoritmos de Deep Learning para, a partir de imagens de satélite, detectar piscinas nos terrenos. No entanto, não é só isso. Além da detecção, deve-se analisar quais estão em situação regular e quais não estão.
Assim, as imagens permitem identificar as piscinas e, a partir de um banco de dados dos cadastros de imóveis, verifica-se quem é o proprietário da piscina e a situação dele em relação ao erário.
Seja pelo tempo, pelo número de agentes estatais ou por questões de segurança, certamente essa não seria uma tarefa trivial se fosse feita manualmente por pessoas. Por essas e outras, a Inteligência Artificial é tão importante e utilizada hoje em dia.
Treinando os modelos de Deep Learning
Divyansh e Rohit Singh escreveram um ótimo artigo no blog GeoAI. Além de compartilharem a apresentação que realizaram na Esri User Conference, mostraram algumas técnicas para detectar piscinas a partir de imagens aéreas.
Para treinar o objeto detector, foi utilizado uma arquitetura neural inspirada na conhecida Single Shot Multibox Detector (SSD), utilizando a técnica Focal Loss para lidarem com o dataset desbalanceado.
Os autores utilizaram uma Resnet-34 (classificador de imagens treinado em cima de 1 milhão de imagens do desafio ImageNet) como base e adicionaram um modelo SSD no topo, utilizando a biblioteca PyTorch.
De acordo com o artigo, foi utilizado o otimizador Adam durante a fase de treinamento e learning rates discriminativas para o fine-tuning do modelo.
Todas as técnicas descritas na apresentação estão disponíveis na biblioteca fast.ai do Python.
Limitações da Inteligência Artificial
Embora bem-sucedido, esse projeto foi apenas um teste aplicado em 2021, restrito a apenas nove regiões da França. “A generalização será feita gradualmente em todos os departamentos da França a partir de setembro”, disse a DGFiP.
“Nós visamos particularmente as extensões das casas, como os terraços”, declarou ao jornal francês Le Parisien Antoine Magnant, vice-diretor da DGFiP.
Além dessa expansão para todo o território do país, o governo tem pretensão de utilizar a Inteligência Articial para detectar outras áreas não declaradas da casa, como terraços e pátios, os quais também aumentam o valor do imposto.
“Mas temos que ter certeza de que o software pode encontrar edifícios com grandes superfícies, e não a casinha de cachorro ou um brinquedo das crianças.”Antoine Magnant, vice-diretor da DGFiP
Porém, deve-se ir com calma e testar mais para evitar problemas maiores, como prisões incorretas – vide, por exemplo, alguns casos de erros no reconhecimento facial.