fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

7 Livros de Data Science em 2021

Carlos Melo por Carlos Melo
outubro 8, 2021
em Blog, Data Science, Destaques, Youtube
1
40
COMPARTILHAMENTOS
1.3k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Frequentemente me perguntam, tanto os alunos do Data Science na Prática e Escola de Data Science quanto o pessoal do Instagram, quais livros eu recomendo para quem está começando ou até para quem quer se aprofundar em Data Science.

A literatura é extensa e cresce a cada dia, mas que livros irão realmente o ajudar e fazer com que você cresça na sua carreira e em suas habilidades? É exatamente isso que vamos discutir hoje!

Sobre Data Science

Se você chegou até aqui, já deve ter uma ideia do que é Data Science. Apesar de haver várias linhas de pensamento tentando definir o que é Data Science, uma delas é o uso de dados e modelos de Machine Learning para gerar previsões e insights em uma determinada área.

Data Science é um conjunto de técnicas e ferramentas que torna isso possível. Apesar do crescente movimento de bibliotecas no-code ou low-code, é extremamente importante, para um profissional que quer se destacar no mercado de Data Science, entender os contextos e os acontecimentos por trás das bibliotecas e, além disso, ter um amplo conhecimento do mercado em que o problema está inserido.

Pensando em ajudá-lo a criar essa ponte entre ciência e negócios, vamos começar a nossa lista de livros essenciais para quem quer se destacar em Data Science.

Se conseguir uma vaga como Cientista de Dados é algo do seu interesse, participe da Semana Data Science na Prática, que vai acontecer entre os dias 06 e 12 de Dezembro. Inscreva-se na Semana Data Science na Prática e conheça um plano à prova de falhas para levá-lo do zero à vaga em Ciência de Dados.


7- Introduction to Computation and Programming Using Python – John V. Guttag

Introduction to Computation and Programming Using Python - Sigmoidal

Esse livro também pode ser encontrado em formato de curso, pelo MIT, na EdX. Foi um dos primeiros livros e cursos que fiz quando estava entrando na área. O diferencial desse livro é sua capacidade técnica, que é voltada para a academia — mas não é um livro acadêmico, trazendo conhecimentos desde o básico ao avançado. Fique atento: compre a edição mais atualizada.


6- Data Science from Scratch – Joel Grus

Data Science from scratch

Com esse livro, precisamos mais uma vez ter atenção à sua edição. A versão em Português está desatualizada, por isso busque a versão em inglês. Lembre-se de que tecnologias evoluem muito rápido, por isso os materiais também ficam desatualizados rapidamente. Busque sempre as versões mais atualizadas dos livros.

O legal desse livro é que ele foca em ensiná-lo os conceitos, e lhe mostra como fazer tudo na mão, na raça, sem depender muito de bibliotecas ou outras coisas nesse sentido feitas para facilitar a sua vida. Isso é muito bacana, pois lhe dá uma base incrível.


5- Storytelling com Dados – Cole Nussbaumer Knaflic

Storytelling com Dados - Sigmoidal

Para quem acompanha o Sigmoidal há um tempo, sabe a importância e o destaque que damos para Storytelling. Esse livro é valioso mesmo para quem não trabalha nessa área. Você pode ser o melhor da sua área, mas se você não sabe se comunicar, não sabe apresentar seus resultados, não vai adiantar de nada.

É muito comum que Cientistas de Dados foquem muito na técnica, no código, e nem sempre as pessoas que vão consumir seu trabalho serão técnicas o suficiente ou estarão interessadas nas pequenas nuances técnicas, que só quem programa e trabalha com isso vai entender.

A importância de conseguir comunicar seus resultados de forma efetiva e que transforme a sua comunicação em uma vantagem competitiva é o que torna esse livro tão relevante. Esse é um dos livros mais importantes dessa lista.


4- Data Science Para Negócios – Foster Provost e Tom Fawcett

Data Science Para Negócios - Sigmoidal

Esse livro também não é só para quem trabalha com dados, com tecnologia. Ele traz insights de negócios e de resolução de problemas que vão além do Data Science. Entender essas coisas é vital para o Cientista de Dados, assim como é muito importante para quem está ao redor dele, mesmo que não atue em uma área diretamente ligada à Ciência de Dados.

Gerentes, diretores, recrutadores, todo mundo que pode estar permeando a área de Data Science vai se beneficiar da leitura desse livro. Ele pode criar a ponte entre quem cria as demandas e quem entrega os resultados de Data Science, para que haja mais performance, mais entrega, e até mais rentabilidade.


3- The Hundred Page Machine Learning Book – Andriy Burkov

The Hundred Page Machine Learning Book - Sigmoidal

Quando comecei a estudar, sentia dificuldade em romper o gap entre intermediário e avançado. Entre o básico e o intermediário, a linha é mais clara, e é mais fácil de romper, mas falta material do intermediário para o avançado.

Esse livro visa a trabalhar esse gap, e levá-lo realmente ao avançado, trabalhando feature engineering, tratamento de dados e avaliação de modelos de uma forma mais técnica e avançada, ajudando-o a alcançar esse próximo nível em Data Science.


2- Approaching (Almost) Any Machine Learning Problem – Abhishek Thakur

Approaching (Almost) Any Machine Learning Problem - Sigmoidal

Esse livro mudou a minha vida! Ele segue a linha do anterior, ajudando-o a quebrar o gap entre o intermediário e o avançado.

Muita coisa que esse livro traz não é fácil de achar em outros lugares, o que o torna ainda mais valioso. Ele traz desde otimização de hiper-parâmetros, cross validation, avaliação de métricas, ajuda-o a sair do seu Jupyter Notebook para que você possa montar uma estrutura de base para projetos, entre muitas e muitas outras coisas.

Esse é, sem dúvidas, um dos livros mais valiosos e avançados de Data Science; é leitura obrigatória para qualquer Cientista de Dados. Só não está em primeiro lugar nessa lista pois o número 1 é a verdadeira bíblia do Machine Learning!


1- Hands–On Machine Learning with Scikit–Learn, Keras and TensorFlow – Aurelien Geron

Como eu falei ali em cima, esse livro é a verdadeira bíblia do Machine Learning! Porém, muito cuidado, pois a versão em Português, mais uma vez, está desatualizada! Busque pela segunda edição, em Inglês, para ter acesso ao material atualizado.

A segunda edição está atualizada para o Tensorflow 2, que mudou algumas coisas muito importantes, como a API do Keras, que fazem com que a primeira edição fique realmente obsoleta.

O livro tem mais de 800 páginas de muita explicação detalhada, exemplos com código, muito material. Esse não é um livro para você sentar e ler. É um livro para degustar, para apreciar e estudar por um bom período. Não tenha pressa!

Aprenda a estudar, busque entender e não só jogar os exemplos no Jupyter Notebook ou no terminal. A prática deve ser 80% do seu estudo, mas esses 20% de teoria não podem ser esquecidos, e devem ser muito bem aproveitados na hora de estudar esse livro.

Chegou a hora de você conhecer o caminho para eliminar a frustração de não saber por onde começar e investir a sua energia no que realmente vai gerar grandes resultados para você.

Participe da Semana Data Science na Prática, entre os dias 06 e 12 de dezembro, em que vou mostra-lhe o caminho para aprender Data Science e conseguir uma vaga na área.

Clique no botão abaixo e participe da Semana Data Science na Prática

QUERO ME INSCREVER NA SEMANA DATA SCIENCE NA PRÁTICA

Você também pode ver o vídeo que eu fiz, no qual falei sobre esses livros, e muito mais conteúdo sobre Data Science, VFX, Filmmaking e muito mais no meu canal no YouTube. Inscreva-se no canal para ficar por dentro de todas as novidades!

Compartilhar3Compartilhar16Enviar
Post Anterior

Estratégias de Balanceamento de Dados em Machine Learning

Próximo Post

Normalização e Padronização de Dados

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

Green Card aprovado por habilidades extraordinárias em Data Science
Blog

Green Card aprovado por habilidades extraordinárias em Data Science

por Carlos Melo
julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens
Artigos

O Que é Amostragem e Quantização no Processamento de Imagens

por Carlos Melo
junho 20, 2025
Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Próximo Post
Normalização e Padronização de Dados

Normalização e Padronização de Dados

Comentários 1

  1. Gabriel says:
    4 anos atrás

    Show

    Responder

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    486 compartilhamentos
    Compartilhar 194 Tweet 122
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    408 compartilhamentos
    Compartilhar 163 Tweet 102
  • O Que é Amostragem e Quantização no Processamento de Imagens

    9 compartilhamentos
    Compartilhar 4 Tweet 2
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    383 compartilhamentos
    Compartilhar 153 Tweet 96
  • Processamento de Nuvens de Pontos com Open3D e Python

    44 compartilhamentos
    Compartilhar 18 Tweet 11
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
Green Card aprovado por habilidades extraordinárias em Data Science

Green Card aprovado por habilidades extraordinárias em Data Science

julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

janeiro 25, 2025

Seguir

  • Aqui nós 🇺🇸, a placa é sua. Quando você troca o carro,  por exemplo, você mesmo tira a sua placa do carro vendido e instala a parafusa no carro novo.

Por exemplo, hoje eu vi aqui no “Detran” dos Estados Unidos, paguei a trasnferência do title do veículo, e já comprei minha primeira placa. 

Tudo muito fácil e rápido. Foi menos de 1 hora para resolver toda a burocracia! #usa🇺🇸 #usa
  • Como um carro autônomo "enxerga" o mundo ao redor?

Não há olhos nem intuição, apenas sensores e matemática. Cada imagem capturada passa por um processo rigoroso: amostragem espacial, quantização de intensidade e codificação digital. 

Esse é o desafio, representar um objeto 3D do mundo real, em pixels que façam sentido para a Inteligência Artificial.

🚗📷 A visão computacional é a área mais inovadora do mundo!

Comente aqui se você concorda.

#carrosautonomos #inteligenciaartificial #IA #visãocomputacional
  • 👁️🤖Visão Computacional: a área mais inovadora do mundo! Clique no link da bio e se inscreva na PÓS EM VISÃO COMPUTACIONAL E DEEP LEARNING! #machinelearning #datascience #visãocomputacional
  • E aí, Sergião @spacetoday Você tem DADO em casa? 😂😂

A pergunta pode ter ficado sem resposta no dia. Mas afinal, o que são “dados”?

No mundo de Data Science, dados são apenas registros brutos. Números, textos, cliques, sensores, imagens. Sozinhos, eles não dizem nada 

Mas quando aplicamos técnicas de Data Science, esses dados ganham significado. Viram informação.

E quando a informação é bem interpretada, ela se transforma em conhecimento. Conhecimento gera vantagem estratégica 🎲

Hoje, Data Science não é mais opcional. É essencial para qualquer empresa que quer competir de verdade.

#datascience #cientistadedados #machinelearning
  • 🎙️ Corte da minha conversa com o Thiago Nigro, no PrimoCast #224

Falamos sobre por que os dados são considerados o novo petróleo - para mim, dados são o novo bacon!

Expliquei como empresas que dominam a ciência de dados ganham vantagem real no mercado. Não por armazenarem mais dados, mas por saberem o que fazer com eles.

Também conversamos sobre as oportunidades para quem quer entrar na área de tecnologia. Data Science é uma das áreas mais democráticas que existem. Não importa sua idade, formação ou cidade. O que importa é a vontade de aprender.

Se você quiser ver o episódio completo, é só buscar por Primocast 224.

“O que diferencia uma organização de outra não é a capacidade de armazenamento de dados; é a capacidade de seu pessoal extrair conhecimento desses dados.”

#machinelearning #datascience #visãocomputacional #python
  • 📸 Palestra que realizei no palco principal da Campus Party #15, o maior evento de tecnologia da América Latina!

O tema que escolhi foi "Computação Espacial", onde destaquei as inovações no uso de visão computacional para reconstrução 3D e navegação autônoma.

Apresentei técnicas como Structure-from-Motion (SFM), uma técnica capaz de reconstruir cidades inteiras (como Roma) usando apenas fotos publicadas em redes sociais, e ORB-SLAM, usada por drones e robôs para mapeamento em tempo real.

#visãocomputacional #machinelearning #datascience #python
  • ⚠️❗ Não deem ideia para o Haddad! 

A França usou Inteligência Artificial para detectar mais de 20 mil piscinas não declaradas a partir de imagens aéreas.

Com modelos de Deep Learning, o governo identificou quem estava devendo imposto... e arrecadou mais de €10 milhões com isso.

Quer saber como foi feito? Veja no post completo no blog do Sigmoidal: https://sigmoidal.ai/como-a-franca-usou-inteligencia-artificial-para-detectar-20-mil-piscinas/

#datascience #deeplearning #computerVision #IA
  • Como aprender QUALQUER coisa rapidamente?

💡 Comece com projetos reais desde o primeiro dia.
📁 Crie um portfólio enquanto aprende. 
📢 E compartilhe! Poste, escreva, ensine. Mostre o que está fazendo. Documente a jornada, não o resultado.

Dois livros que mudaram meu jogo:
-> Ultra Aprendizado (Scott Young)
-> Uma Vida Intelectual (Sertillanges)

Aprenda em público. Evolua fazendo.

#ultralearning #estudos #carreira
  • Como eu usava VISÃO COMPUTACIONAL no Centro de Operações Espaciais, planejando missões de satélites em situações de desastres naturais.

A visão computacional é uma fronteira fascinante da tecnologia que transforma a forma como entendemos e respondemos a desastres e situações críticas. 

Neste vídeo, eu compartilho um pouco da minha experiência como Engenheiro de Missão de Satélite e especialista em Visão Computacional. 

#VisãoComputacional #DataScience #MachineLearning #Python
  • 🤔 Essa é a MELHOR linguagem de programação, afinal?

Coloque sua opinião nos comentários!

#python #datascience #machinelearning
  • 💘 A história de como conquistei minha esposa... com Python!

Lá em 2011, mandei a real:

“Eu programo em Python.”
O resto é história.
  • Para rotacionar uma matriz 2D em 90°, primeiro inverto a ordem das linhas (reverse). Depois, faço a transposição in-place. Isso troca matrix[i][j] com matrix[j][i], sem criar outra matriz. A complexidade segue sendo O(n²), mas o uso de memória se mantém O(1).

Esse padrão aparece com frequência em entrevistas. Entender bem reverse + transpose te prepara para várias variações em matrizes.

#machinelearning #visaocomputacional #leetcode
  • Na última aula de estrutura de dados, rodei um simulador de labirintos para ensinar como resolver problemas em grids e matrizes.

Mostrei na prática a diferença entre DFS e BFS. Enquanto a DFS usa stacks, a BFS utiliza a estrutura de fila (queue). Cada abordagem tem seu padrão de propagação e uso ideal.

#machinelearning #visaocomputacional #algoritmos
  • 🔴 Live #2 – Matrizes e Grids: Fundamentos e Algoritmos Essenciais

Na segunda aula da série de lives sobre Estruturas de Dados e Algoritmos, o foco será em Matrizes e Grids, estruturas fundamentais em problemas de caminho, busca e representação de dados espaciais.

📌 O que você vai ver:

Fundamentos de matrizes e grids em programação
Algoritmos de busca: DFS e BFS aplicados a grids
Resolução ao vivo de problemas do LeetCode

📅 Terça-feira, 01/07, às 22h no YouTube 
🎥 (link nos Stories)

#algoritmos #estruturasdedados #leetcode #datascience #machinelearning
  • 💡 Quer passar em entrevistas técnicas?
Veja essa estratégia para você estudar estruturas de dados em uma sequência lógica e intuitiva.
⠀
👨‍🏫 NEETCODE.io
⠀
🚀 Marque alguém que também está se preparando!

#EntrevistaTecnica #LeetCode #MachineLearning #Data Science
  • Live #1 – Arrays & Strings: Teoria e Prática para Entrevistas Técnicas

Segunda-feira eu irei começar uma série de lives sobre Estruturas de Dados e Algoritmos. 

No primeiro encontro, falarei sobre um dos tipos de problemas mais cobrados em entrevistas: Arrays e Strings.

Nesta aula, você vai entender a teoria por trás dessas estruturas, aprender os principais padrões de resolução de problemas e aplicar esse conhecimento em exercícios selecionados do LeetCode.

📅 Segunda-feira, 23/06, às 21h no YouTube

🎥 (link nos Stories)

#machinelearning #datascience #cienciadedados #visãocomputacional
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.