fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Carlos Melo por Carlos Melo
setembro 19, 2019
em Blog, Data Science
13
38
COMPARTILHAMENTOS
1.3k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Todos os anos, mais de 12 mil pessoas tiram suas próprias vidas no Brasil. Em um cenário mundial, esse número ultrapassa 1 milhão de pessoas, levando o suicídio a ser considerado um problema de saúde pública.

Para você ter uma noção da dimensão desses números, saiba que o suicídio tem uma taxa maior do que vítimas de AIDS e da maioria dos tipos de câncer. Segundo a Organização Mundial da Saúde (OMS), o Brasil ocupa o oitavo lugar no número de suicídios no mundo: São 32 brasileiros por dia.

Setembro Amarelo é uma iniciativa da Associação Brasileira de Psiquiatria (ABP), em parceria com o Conselho Federal de Medicina (CFM), para divulgar e alertar a população sobre o problema.

Suicídio, Python e Data Science: Prevenção e conscientização.

Oficialmente, o Dia Mundial de Prevenção ao Suicídio ocorre no dia 10 de setembro, porém durante o mês inteiro são promovidos debates, campanhas e ações para a conscientização sobre o suicídio.

Data Science na prevenção do suicídio no Brasil - Data Science

O que trago neste artigo é muito mais que apenas um artigo de Ciência de Dados. É uma pequena contribuição que visa ajudar a entender a extensão desse problema no Brasil, além de incentivar o Setembro Amarelo dentro da comunidade Python e Data Science.

Para você acompanhar o código, disponibilizei o Jupyter notebook completo, com todas as etapas. Clique no botão abaixo para acessar.

Descrição dos dados sobre suicídio

O melhor conjunto de dados – que eu encontrei na internet – está hospedado nesta página e traz informações sobre vários países. O dataset contempla o período entre os anos de 1985 e 2016.

Suicídio, depressão e Data Science.

Esse dataset, na verdade, é um compilado de outros 4 datasets. A pessoa que disponibilizou o mesmo fez um grande trabalho de limpeza e padronização. Caso você deseje saber e tenha interesse em conhecer as fontes que deram origem a este único arquivo, são elas:

  • United Nations Development Program. (2018). Human development index – HDI.
  • World Bank. (2018). World development indicators: GDP (current US$) by country:1985 to 2016.
  • Suicide in the Twenty-First Century (Szamil, 2017).
  • World Health Organization. (2018). Suicide prevention.

Dicionário de Variáveis

O arquivo csv importado possui 12 colunas, provenientes da compilação dos 4 datasets mencionados acima. As variáveis são:

  • country: país onde os dados foram registrados
    • 101 países
  • year: ano em que os dados foram registrados
    • 1987 a 2016
  • sex: sexo considerado no registro
    • male – masculino
    • female – feminino
  • age: faixa etária considerada
    • 5-14 anos
    • 15-24 anos
    • 25-34 anos
    • 35-54 anos
    • 55-74 anos
    • 75+ anos
  • suicides_no: número de suicídios
  • population: população para o grupo
  • suicides/100k pop: número de suicídios por 100 mil habitantes
  • country_year: identificador contendo country + year
  • HDI for year: Índice de Desenvolvimento Humano (IDH) para o ano
  • gdp_for_year: Produto Interno Bruto (PIB) para o ano
  • gdp_per_capita: Produto Interno Bruto (PIB) per capita

Análise Exploratória dos Dados

Como mencionei acima, este arquivo recebeu um tratamento anterior que facilitará muito a nossa análise.

O conjunto de dados contém 27.820 linhas e 12 colunas. Como você pode ver abaixo, os dados podem ser agrupados por vários critérios como país, ano, sexo e idade.

A primeira coisa que eu quero fazer é criar um DataFrame contendo apenas as informações relacionadas ao Brasil. Isso irá facilitar muito nossa manipulação da estrutura, além de ser uma boa prática em projetos de Data Science.

Para ter uma noção da integridade dos dados, vou verificar isoladamente os DataFrames do Brasil e o Mundial. Principalmente quando se quer comparar duas coisas, é importante que elas sejam similares e estatisticamente representativas.

Como você poder ver abaixo, a porcentagem de valores ausentes referentes ao IDH torna inviável o uso dessa variável. Caso se desejasse realmente usar, seria necessária uma etapa de coleta de dados a partir de outras fontes.

Tendência da taxa de suicídio no Brasil

Uma primeira comparação que farei diz respeito ao número de suicídios cometidos no Brasil por 100 mil habitantes, e a tendência do gráfico em relação à taxa mundial.

Para ver a tendência, é melhor sempre usar essa relação por 100 mil, pois a população do país cresceu muito de 1985 a 2015. Se formos comparar em termos absolutos, poderemos tirar conclusões erradas ou distorcidas.

Uma coisa que é facilmente percebida no gráfico acima é que, apesar da taxa de suicídios no Brasil ser menor que a média mundial, ela vem crescendo constantemente ao longo de 30 anos.

A linha laranja teve um pico por volta de 1995, porém reverteu o slope e vem caindo ano após ano. Já a linha azul (Brasil) tem um slope positivo praticamente ao longo de todo o período analisado.

Faixa etária com maior índice de suícidio

Abaixo, eu criei uma tabela dinâmica (pivot table) para analisar as 6 faixas etárias em função do ano e do número de suicídios por 100 mil habitantes.

Meu principal objetivo aqui é identificar qual a faixa etária que tem a maior representatividade entre aqueles que tiram a própria vida, e identificar se houve alguma mudança no perfil ao longo de 30 anos.

Mesmo visualmente é fácil identificar que o grupo de pessoas que mais cometem suicídio está entre 35-54 anos. Em segundo lugar, estão pessoas entre 25-34 anos de idade.

Juntos, esses dois grupos correspondem a quase 60% dos registros do banco de dados.

Um outro ponto que vale a pena ressaltar é o aumento de casos entre pessoas acima de 55 anos. Em 1985, as pessoas com mais idade representavam uma pequena fatia do número total.

Entretanto, em 2015 é nítido que mesmo para pessoas acima de 75 anos houve um incremento significativo no número de suicídios.

Para se inferir a causa dessa mudança de padrão, é necessário se avaliar mais profundamente questões que vão além dos números (como exemplo, fatores qualitativos, momento econômico do país e a cultura dominante de cada época).

Taxa de suicídio entre homens e mulheres

Uma outra análise de grande importância é ver a porcentagem dos suicídios entre homens e mulheres.

Analisando-se todo o período, o dataset utilizado mostrou que aproximadamente 78% dos casos foram cometidos por homens e 22% deles por mulheres. Optou-se por pegar a média dos 30 anos, pois não houve mudança significativa desse comportamento durante o período.

Correlações entre o PIB, IDH e número de suicídios

Criando uma matriz de correlação e plotando um heatmap, infere-se que o aumento no PIB per capita não diminuiu o número de suicídios por 100 mil habitantes. Na verdade, ele se manteve estável, contrariando o senso comum da maioria das pessoas.

Em relação ao IDH, como foi mencionado anteriormente, há muitos valores ausentes nas células, o que pode dar uma interpretação incorreta ou com viés.

Data Science na prevenção do suicídio

O que eu quis trazer neste artigo foi um projeto de análise de dados , visando conscientizar a comunidade Python e Data Science sobre a real importância de um problema tão latente nos dias atuais; porém, negligenciado ou ignorado por boa parte das pessoas.

O conjunto de dados usado aqui é simplificado, porém ideal para uma abordagem inicial.

Há diversas iniciativas dentro do campo da Inteligência Artificial visando não apenas a conscientização, mas também prevenção de suicídios. Uma das mais populares diz respeito à análise de postagens em redes sociais, onde algoritmos de Machine Learning são capazes de identificar potenciais suicidas e alertar outras pessoas.

A campanha é em setembro, mas falar sobre prevenção do suicídio em todos os meses do ano é fundamental

Setembro Amarelo

Ainda são iniciativas muito incipientes, que esbarram em muitas questões de privacidade. Porém, empresas como o Facebook já tem apostado nesse caminho.

Espero que este artigo tenha trazido um pouco de conhecimento e alertado você sobre um problema tão sério. Sinta-se à vontade para expandir meu notebook e compartilhar o resultado com mais pessoas.

Lembre-se de que não é frescura e que ninguém está querendo aparecer.

Na verdade, a gente nunca tem a mínima ideia do que a outra pessoa está passando. Qualquer atitude que você tenha, que possa contribuir para a prevenção do suicídio, pode significar uma vida que você salvou 😉

Compartilhar3Compartilhar15Enviar
Post Anterior

Como Aprender Data Science?

Próximo Post

O que é GPT-3 e por que ele é importante?

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

Por que o ChatGPT mente para você?
Artigos

Por que o ChatGPT mente para você?

por Carlos Melo
setembro 16, 2025
Green Card aprovado por habilidades extraordinárias em Data Science
Blog

Green Card aprovado por habilidades extraordinárias em Data Science

por Carlos Melo
julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens
Artigos

O Que é Amostragem e Quantização no Processamento de Imagens

por Carlos Melo
junho 20, 2025
Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Próximo Post
O que é GPT-3 e por que ele é importante?

O que é GPT-3 e por que ele é importante?

Comentários 13

  1. Camila Melo says:
    6 anos atrás

    Parabéns pelo estudo e por trazer esse assunto tão pouco comentado 🙂

    Responder
    • Carlos Melo Carlos Melo says:
      6 anos atrás

      Muito obrigado pelo seu comentário, Camila. Fico feliz de ter dado algum tipo de contribuição para esse problema tão sério e ignorado por muitos aind 🙂

      Responder
  2. Luis says:
    6 anos atrás

    Parabéns pela iniciativa @Carlos Melo! Pena que os dados só vão até 2016. Seria interessante se tivesse uma variável de “Motivação” (depressão, doença, perda de familiar, drogas…), para uma análise de causa raiz, que ajudaria numa identificação prévia comportamental.

    Responder
    • Carlos Melo Carlos Melo says:
      6 anos atrás

      Infelizmente sim. Porém, os quatro links que eu coloquei permitem adicionar novas colunas ao dataset já existente. Um trabalho muito bacana seria concatenar com bases de dados do Brasil. Acredito que graças à Lei de Acesso à Informação, esse tipo de informação deva estar disponibilizada publicamente. Muito obrigado =)

      Responder
  3. Thiago Souza says:
    6 anos atrás

    Cara, gostei muito! Parabéns pela iniciativa! Vou estudar com cuidado seus dados. Você deveria publica-los em revista, estão muito bons.

    Responder
    • Carlos Melo Carlos Melo says:
      2 anos atrás

      Muito obrigado pelo comentário!

      Responder
  4. Fabiano Almeida says:
    6 anos atrás

    Carlos, excelente post sobre um tema realmente muito crítico e de utilidade pública. Todos precisamos discutir o tema e buscar uma maneira de ajudar a quem mais precisa quanto a esta situação. Você publicou o seu notebook em algum local? Gostaria sim de analisar e, de repente, incrimentá-lo. Parabéns! Obrigado por compartilhar com todos os seus estudos.

    Responder
    • Carlos Melo Carlos Melo says:
      6 anos atrás

      Obrigado, Fabiano. Com certeza, um projeto desse serve para ajudar a conscientizar e mostrar como Data Science pode ser aliada 🙂

      Responder
  5. Leo Sanchez says:
    6 anos atrás

    Carlos Melo, parabéns por seu trabalho em um assunto tão importante à sociedade! Você realizou uma análise excelente com esses dados.

    Responder
    • Carlos Melo Carlos Melo says:
      6 anos atrás

      Muito obrigado, Leo! Data Science pode ajudar muito a conscientizar e validar (ou não) algumas hipóteses 🙂

      Responder
  6. yago nu8nes says:
    6 anos atrás

    Oi, como voce inseriu esta caixa de comentarios no wordpress? tambem comecei um site em wordpress sobre data science

    Responder
    • Carlos Melo Carlos Melo says:
      6 anos atrás

      O WordPress tem essa funcionalidade nativa, mas você consegue usar plugins específicos para isso também 🙂

      Responder
  7. Alan says:
    5 anos atrás

    excelente artigo, Carlos!
    obrigado por compartilhar, tanto pela data science quanto pela questão sensível referente ao assunto.

    Responder

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    511 compartilhamentos
    Compartilhar 204 Tweet 128
  • Por que o ChatGPT mente para você?

    9 compartilhamentos
    Compartilhar 4 Tweet 2
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    424 compartilhamentos
    Compartilhar 170 Tweet 106
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    397 compartilhamentos
    Compartilhar 159 Tweet 99
  • Processamento de Nuvens de Pontos com Open3D e Python

    56 compartilhamentos
    Compartilhar 22 Tweet 14
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
Por que o ChatGPT mente para você?

Por que o ChatGPT mente para você?

setembro 16, 2025
Green Card aprovado por habilidades extraordinárias em Data Science

Green Card aprovado por habilidades extraordinárias em Data Science

julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025

Seguir

  • 💰 Você sabe o que faz e quanto ganha um cientista de dados?

Ser Cientista de Dados significa trabalhar com inteligência artificial, estatística e programação para transformar dados em decisões que movimentam negócios e impactam bilhões de pessoas.

É a função que dá vida a recomendações personalizadas, modelos preditivos e sistemas inteligentes que mudam a forma como empresas inovam.

E não é apenas fascinante...

💼💰 É também uma das carreiras mais bem remuneradas da área de tecnologia!

Se você quer uma carreira com futuro, relevância e excelente retorno financeiro, Data Science é o caminho certo!

#cientistadedados #datascience #python
  • Você colocaria fraldas do lado das cervejas no seu supermercado? 🤔

Parece estranho, mas foi exatamente essa descoberta que mudou as vendas do Walmart.

Os cientistas de dados da empresa analisaram milhões de transações com uma técnica de Data Mining que identifica padrões de compra e combinações inesperadas de produtos.

Então, usando algoritmos da Data Science, cruzaram dados de horário, perfil de cliente e itens comprados juntos.

Encontraram algo curioso: homens que passavam no mercado após as 18h para comprar fraldas, muitas vezes no caminho de casa, também compravam cerveja 🍺.

O Walmart testou a hipótese: colocou fraldas perto da seção de cervejas.

O resultado? As vendas de cerveja dispararam. 🚀

Esse é um exemplo clássico de como Data Science gera impacto direto no negócio.

Não é sobre algoritmos complexos apenas; é sobre transformar dados históricos em decisões inteligentes e lucrativas.

#datascience #cientistadedados #machinelearning
  • Conheça as formações da Academia Sigmoidal.

Nossos programas unem rigor acadêmico, prática aplicada e dupla certificação internacional, preparando você para atuar em Data Science, Visão Computacional e Inteligência Artificial com impacto real no mercado.

🤖 Pós-Graduação em Data Science: Forma Cientistas de Dados e Engenheiros de Machine Learning do zero, com Python, estatística e projetos práticos do mundo real.

👁️ Pós-Graduação em Visão Computacional: Especialize-se em processamento de imagens, Deep Learning, redes neurais e navegação autônoma de drones, tornando-se Engenheiro de Visão Computacional ou Engenheiro de Machine Learning.

📊 MBA em Inteligência Artificial: Voltado a profissionais de qualquer área, ensina a aplicar IA estrategicamente em negócios, usando automação, agentes de IA e IA generativa para inovação e competitividade.

Além do título de Especialista reconhecido pelo MEC, você ainda conquista uma Dupla Certificação Internacional com o STAR Research Institute (EUA).

💬 Interessado em dar o próximo passo para liderar no mercado de tecnologia? Me envie uma mensagem e eu te ajudo pessoalmente com a matrícula.

#DataScience #InteligenciaArtificial #VisaoComputacional
  • Treinar um modelo significa encontrar um bom conjunto de parâmetros. Esse conjunto é definido pela função objetivo, também chamada de função de perda. 👀

O gradient descent é o algoritmo que ajusta esses parâmetros passo a passo. Ele calcula a direção de maior inclinação da função de perda e move o modelo para baixo nessa curva. ⬇️

Se o parâmetro é o peso que multiplica X ou o bias que desloca a reta, ambos são atualizados. Cada iteração reduz o erro, aproximando o modelo da solução ótima.

A intuição é simples: sempre que a função de perda é maior, o gradiente aponta o caminho. O algoritmo segue esse caminho até que não haja mais descida possível. 🔄 

#inteligênciaartificial #datascience #machinelearning
  • Qual a melhor linguagem? PYTHON ou R?

Diretamente do túnel do tempo! Resgatei esse vídeo polêmico de 2021, quem lembra??

#DataScience #Python #R #Programação
  • 🎥 Como começar uma CARREIRA como CIENTISTA DE DADOS

Você já pensou em entrar na área que mais cresce e que paga os melhores salários no mundo da tecnologia?

Domingo você vai descobrir o que realmente faz um Cientista de Dados, quais são as habilidades essenciais e o passo a passo para dar os primeiros passos na carreira.

Eu vou te mostrar um mapa para você sair do zero e se preparar para trabalhar com Data Science em 2026.

📅 Domingo, 28 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

Clique no link dos Stories e receba o link da aula ao vivo!

#datascience #machinelearning #cientistadedados
  • VISÃO COMPUTACIONAL está no centro de um dos avanços mais impressionantes da exploração espacial recente: o pouso autônomo da missão Chang’e-5 na Lua. 🚀🌑

Durante a descida, câmeras de alta resolução e sensores a laser capturavam continuamente o relevo lunar, enquanto algoritmos embarcados processavam as imagens em tempo real para identificar crateras e obstáculos que poderiam comprometer a missão.

Esses algoritmos aplicavam técnicas de detecção de bordas e segmentação, aproximando crateras por elipses e cruzando a análise visual com dados de altímetros. Assim, a IA conseguia selecionar regiões planas e seguras para o pouso, ajustando a trajetória da nave de forma autônoma. 

Esse processo foi indispensável, já que a distância entre Terra e Lua gera atraso de comunicação que inviabiliza controle humano direto em tempo real.

Esse caso ilustra como IA embarcada está deixando de ser apenas uma ferramenta de análise pós-missão para se tornar parte crítica das operações espaciais autônomas em tempo real — um passo essencial para missões em Marte, asteroides e no lado oculto da Lua.

(PS: Vi o Sérgio Sacani, do @spacetoday , postando isso primeiro.)

#visaocomputacional #machinelearning #datascience
  • 🔴Aprenda a MATEMÁTICA por Trás do MACHINE LEARNING

Você já se perguntou como as máquinas aprendem?🤖 

A resposta está na matemática que dá vida ao Machine Learning. E neste vídeo, você vai aprender os conceitos fundamentais que sustentam os algoritmos de inteligência artificial, de forma clara e acessível.

Mais do que apenas fórmulas, a ideia é mostrar como cada peça matemática se conecta para transformar dados em aprendizado. Se você deseja compreender a lógica por trás do funcionamento das máquinas, essa aula é um ótimo ponto de partida.

📅 Domingo, 21 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

#machinelearning #datascience #cientistadedados
  • 🚀 As matrículas estão abertas!
Depois de quase 1 ano, a nova turma da Pós-Graduação em Data Science chegou.

NOVIDADE: agora com Dupla Certificação Internacional:
🇧🇷 Diploma de Especialista reconhecido pelo MEC
🇺🇸 Certificado do STAR Research Institute (EUA)

Aprenda Data Science na prática, domine Machine Learning e IA, e conquiste reconhecimento no Brasil e no mundo.

2025 pode ser o ano em que você dá o passo decisivo para se tornar Cientista de Dados.

🔗 Clique no link da bio e reserve sua vaga!
#datascience #cienciadedados #python
  • Por que o CHATGPT MENTE PARA VOCÊ? 🤔

Já percebeu que o ChatGPT às vezes responde com confiança... mas está errado? 

Isso acontece porque, assim como um aluno em prova, ele prefere chutar do que deixar em branco.
Essas respostas convincentes, mas erradas, são chamadas de alucinações.

E o que o pesquisadores da OpenAI sugerem, é que esse tipo de comportamento aparece porque os testes que treinam e avaliam o modelo premiam o chute e punem a incerteza.

Então, da próxima vez que ele ‘inventar’ algo, lembre-se: não é pessoal, ele apenas for treinado dessa maneira!
#inteligênciaartificial #chatgpt #datascience
  • ChatGPT: um "estagiário de LUXO" para aumentar sua produtividade na programação.

 #programacao #copiloto #produtividade #streamlit #dashboard #tecnologia #devlife
  • Da série “Foi a IA que me deu”, vamos relembrar minha viagem pra Tromsø, na Noruega, 500 km acima da linha do Círculo Polar Ártico. 🌍❄️

No vídeo de hoje, você vai aprender o que é um "fiorde"! 

Como você dormia sem saber o que era um fiorde?? 😅
  • Qual LINGUAGEM DE PROGRAMAÇÃO é usada na TESLA?

A Tesla utiliza diferentes linguagens de programação em cada fase do ciclo de desenvolvimento. 

O treinamento das redes neurais convolucionais (CNN) é feito em Python, aproveitando bibliotecas científicas e a rapidez de prototipagem. Isso permite testar arquiteturas de CNN com agilidade no ambiente de pesquisa.

Já a implementação embarcada ocorre em C++, garantindo alta performance. Como os modelos de CNN precisam responder em tempo real, o C++ assegura baixa latência para tarefas como detectar pedestres e interpretar placas de trânsito.

Com isso, a Tesla combina Python para pesquisa e C++ para produção, equilibrando inovação e velocidade em sistemas críticos de visão computacional.

#python #machinelearning #inteligenciaartificial
  • Aproveitando o domingo… vamos relaxar um pouco e falar sobre cinema 🎬

Em
  • Já se perguntou como conseguimos distinguir intuitivamente um gato de um cachorro, mesmo com tantas semelhanças físicas? 

Para nós, essa identificação é quase automática.

Na filosofia aristotélica, a inteligência é um atributo da alma: o mundo real é captado pelos sentidos, transformado em imagens na imaginação (fantasmas), e organizado em conceitos que nos permitem compreender a realidade de forma imediata.

Já as máquinas não têm alma nem intuição. Para aprender essa mesma tarefa, precisam decompor o problema em camadas hierárquicas: 

Nas primeiras, redes neurais profundas extraem padrões simples (bordas, texturas); nas intermediárias, formas mais abstratas (orelhas, olhos, focinho); e apenas nas finais esses elementos são combinados em conceitos de alto nível como “gato” ou “cachorro”.

Enquanto nós chegamos ao entendimento de forma direta, a inteligência artificial depende de sucessivas representações para “fazer sentido” do mundo. 🤖

#inteligênciaartificial #redesneurais #deepLearning #filosofia #tecnologia
  • INTELIGÊNCIA ARTIFICIAL se tornou a carreira mais promissora atualmente.

Este mercado, em constante crescimento global, oferece oportunidades de trabalho remoto, seja como freelancer ou contratado por empresas. 

Para quem busca uma carreira flexível e em expansão, a área de DATA SCIENCE / IA pode ser o caminho ideal. 

Afinal, você consgue me dizer quais outras áreas oferecem tamanha versatilidade e crescimento? 

#cienciadedados #python #inteligenciaartificial #mercadodetrabalho #tecnologia #oportunidades
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.