fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Gerando amostras para modelos de Deep learning no ArcGIS Pro

joaoaraide por joaoaraide
janeiro 27, 2022
em Data Science, Deep Learning
0
10
COMPARTILHAMENTOS
321
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Boa parte do pessoal que está começando com data science não sabe como aquelas amostras de imagens surgem todas bonitinhas e prontas para criar os seus modelos de deep learning e depois colocar em produção.

modelos de Deep learning no ArcGIS Pro

Neste artigo, vou mostrar-lhes uma ferramenta do ArcGIS Pro, que nos auxiliará a extrair amostras de imagens, marcações e augmentation, e ainda deixar no formato correto para cada problema e arquitetura de rede neural que formos trabalhar.

modelos de Deep learning no ArcGIS Pro

Porém, antes preciso explicar o que é o ArcGIS Pro. Essa ferramenta, desenvolvida pela Esri, é uma evolução do ArcMap e tinha basicamente a funcionalidade de realizar análises espaciais, criar mapas.

Hoje, no entanto, existe uma infinidade de outras ferramentas que compõem uma plataforma em que se pode realizar quase todo tipo de trabalho, seja na criação de algoritmos de deep learning para detecção de objetos, seja na classificação tanto de imagens quanto de vídeos.

Fluxo do processo

Basicamente, o fluxo de processo para realizar a extração destas amostras segue o seguinte fluxo:

modelos de Deep learning no ArcGIS Pro

Primeiro, realiza-se a escolha das imagens, em relação à significância dessas para o processo de treinamento, como, por exemplo, quando você esta trabalhando com imagens de satélite e as imagens possuem muita nuvem.

Após isso, começa-se de fato a exportação das amostras. Inicialmente, como qualquer trabalho de visão computacional, é importantíssimo os Processamento Digitais de Imagens, realizar filtros convulsionais, filtros de ruído, composições de bandas, fusão e tudo mais que precisa ser feito, mas vamos deixar esse assunto para um próximo artigo.

Lógico que você pode fazer um filtro de PDI que nos ajude a enxergar determinada informação, realizar a criação de máscaras e automatizar esse processo. Porém, quando são coisas bem específicas, o processo de marcação será feito manualmente e demandará uma equipe exclusiva para isso. No geral, em torno de 30% de todo tempo usado será gasto para criar um modelo.

modelos de Deep learning no ArcGIS Pro

Na interface do ArcGIS Pro, isso é simples, bastando somente criar um arquivo vetorial poligonal, como uma Feature Class ou um shape file (são formatos de arquivos espaciais).

E estabelecer dentro desse arquivo os atributos de Class e Value. e você pode já colocar como Default, assim ajudando a acelerar o trabalho de marcação — claro, quando o trabalho que está fazendo só tem uma classe a ser detectada.

modelos de Deep learning no ArcGIS Pro

As imagens ficam assim marcadas no final.

modelos de Deep learning no ArcGIS Pro
modelos de Deep learning no ArcGIS Pro

Agora, é simples exportar os dados. Usando uma função existente no ArcGIS Pro, basta somente escolher a imagem de input e o diretório para o qual sua coleção será exportada.

Além disso, passamos as marcações que acabei de mostrar, assim como Class Value Field, que será aquele atributo Default. Você também pode colocar um raio para Buffer das marcações que mostrei (isso é válido quando estamos fazendo marcações de Pontos e Linhas).

modelos de Deep learning no ArcGIS Pro

Então, agora podemos realizar o Augmentation das imagens, processo de fazer o aumento das amostras e variedade das mesma. Geralmente temos 5 atributos que podemos alterar Size, Stride e Rotation.

  • Size X and Y: tamanho em pixels das imagens.
  • Stride X and Y: refere-se a uma sobreposição em pixels entre as imagens nas dimensões X e Y.
  • Rotation Angle: Uma função que basicamente rotacional as imagens em um passo com o valor do ângulo.
modelos de Deep learning no ArcGIS Pro
modelos de Deep learning no ArcGIS Pro

Uma das vantagens dessa ferramenta é poder exportar as amostras de maneira mais adequada para o tipo de modelo que está sendo desenvolvido, podendo exportar no formato para RCNN. Para modelos de Classified Tiles como UNET e até mesmo só exportar as Tiles caso o modelo que você esteja desenvolvendo não seja específico.

No final, podemos também ter uma visão de relatório da execução da extração, mostrando o balanceamento, tamanho das imagens e tudo mais que você vai precisar para fazer um bom treinamento.

modelos de Deep learning no ArcGIS Pro

É lógico que tudo isso pode ser automatizado com somente duas linhas de código, exceto a marcação dos objetos.

#Importar biblioteca do Arcpy
import arcpy
#Exportar Traning Data for DeepLearning
arcpy.ia.ExportTrainingDataForDeepLearning("imagem.tif", r"D:\\amostras","features", "TIFF",
																						256, 256, 128, 128, "ALL_TILES", "RCNN_Masks",
																						0, "Value", 0, None, 90, "PIXEL_SPACE",
																						"PROCESS_AS_MOSAICKED_IMAGE", "NO_BLACKEN",
																						"FIXED_SIZE", None)
Compartilhar1Compartilhar4Enviar
Post Anterior

Como fazer gráficos rotulados em Python

Próximo Post

Entendendo as árvores de decisão em Machine Learning

joaoaraide

joaoaraide

Relacionado Artigos

Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Carlos Melo da Pós Graduação em Data Science do Sigmoidal
Aeroespacial

Oportunidades no Setor Espacial para Cientistas de Dados

por Carlos Melo
janeiro 15, 2025
Minha Participação no Hipsters Ponto Tech: TensorFlow
Deep Learning

Minha Participação no Hipsters Ponto Tech: TensorFlow

por Carlos Melo
abril 10, 2024
Próximo Post
Entendendo as árvores de decisão em Machine Learning

Entendendo as árvores de decisão em Machine Learning

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    451 compartilhamentos
    Compartilhar 180 Tweet 113
  • Equalização de Histograma com OpenCV e Python

    112 compartilhamentos
    Compartilhar 45 Tweet 28
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    385 compartilhamentos
    Compartilhar 154 Tweet 96
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    368 compartilhamentos
    Compartilhar 147 Tweet 92
  • Redes Neurais Convolucionais com Python

    92 compartilhamentos
    Compartilhar 37 Tweet 23
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

janeiro 25, 2025
Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

janeiro 22, 2025
Trump revoga decreto de Biden sobre regulação de Inteligência Artificial

Trump revoga decreto de Biden sobre regulação de Inteligência Artificial

janeiro 21, 2025

Seguir

  • 🇺🇸 Green Card por Habilidade Extraordinária em Data Science e Machine Learning

Após nossa mudança para os EUA, muitas pessoas me perguntaram como consegui o Green Card tão rapidamente. Por isso, decidi compartilhar um pouco dessa jornada.

O EB-1A é um dos vistos mais seletivos para imigração, sendo conhecido como “The Einstein Visa”, já que o próprio Albert Einstein obteve sua residência permanente através desse processo em 1933.

Apesar do apelido ser um exagero moderno, é fato que esse é um dos vistos mais difíceis de conquistar. Seus critérios rigorosos permitem a obtenção do Green Card sem a necessidade de uma oferta de emprego.

Para isso, o aplicante precisa comprovar, por meio de evidências, que está entre os poucos profissionais de sua área que alcançaram e se mantêm no topo, demonstrando um histórico sólido de conquistas e reconhecimento.

O EB-1A valoriza não apenas um único feito, mas uma trajetória consistente de excelência e liderança, destacando o conjunto de realizações ao longo da carreira.

No meu caso específico, após escrever uma petição com mais de 1.300 páginas contendo todas as evidências necessárias, tive minha solicitação aprovada pelo USCIS, órgão responsável pela imigração nos Estados Unidos.

Fui reconhecido como um indivíduo com habilidade extraordinária em Data Science e Machine Learning, capaz de contribuir em áreas de importância nacional, trazendo benefícios substanciais para os EUA.

Para quem sempre me perguntou sobre o processo de imigração e como funciona o EB-1A, espero que esse resumo ajude a esclarecer um pouco mais. Se tiver dúvidas, estou à disposição para compartilhar mais sobre essa experiência! #machinelearning #datascience
  • 🚀Domine a tecnologia que está revolucionando o mundo.

A Pós-Graduação em Visão Computacional & Deep Learning prepara você para atuar nos campos mais avançados da Inteligência Artificial - de carros autônomos a robôs industriais e drones.

🧠 CARGA HORÁRIA: 400h
💻 MODALIDADE: EAD
📅 INÍCIO DAS AULAS: 29 de maio

Garanta sua vaga agora e impulsione sua carreira com uma formação prática, focada no mercado de trabalho.

Matricule-se já!

#deeplearning #machinelearning #visãocomputacional
  • Green Card aprovado! 🥳 Despedida do Brasil e rumo à nova vida nos 🇺🇸 com a família!
  • Haverá sinais… aprovado na petição do visto EB1A, visto reservado para pessoas com habilidades extraordinárias!

Texas, we are coming! 🤠
  • O que EU TENHO EM COMUM COM O TOM CRUISE??

Clama, não tem nenhuma “semana” aberta. Mas como@é quinta-feira (dia de TBT), olha o que eu resgatei!

Diretamente do TÚNEL DO TEMPO: Carlos Melo &Tom Cruise!
  • Bate e Volta DA ITÁLIA PARA A SUÍÇA 🇨🇭🇮🇹

Aproveitei o dia de folga após o Congresso Internacional de Astronáutica (IAC 2024) e fiz uma viagem “bate e volta” para a belíssima cidade de Lugano, Suíça.

Assista ao vlog e escreve nos comentários se essa não é a cidade mais linda que você já viu!

🔗 LINK NOS STORIES
  • Um paraíso de águas transparentes, e que fica no sul da Suíça!🇨🇭 

Conheça o Lago de Lugano, cercado pelos Alpes Suíços. 

#suiça #lugano #switzerland #datascience
  • Sim, você PRECISA de uma PÓS-GRADUAÇÃO em DATA SCIENCE.
  • 🇨🇭Deixei minha bagagem em um locker no aeroporto de Milão, e vim aproveitar esta última semana nos Alpes suíços!
  • Assista à cobertura completa no YT! Link nos stories 🚀
  • Traje espacial feito pela @axiom.space em parceria com a @prada 

Esse traje será usados pelos astronautas na lua.
para acompanhar as novidades do maior evento sobre espaço do mundo, veja os Stories!

#space #nasa #astronaut #rocket
  • INTERNATIONAL ASTRONAUTICAL CONGRESS - 🇮🇹IAC 2024🇮🇹

Veja a cobertura completa do evento nos DESTAQUES do meu perfil.

Esse é o maior evento de ESPAÇO do mundo! Eu e a @bnp.space estamos representando o Brasil nele 🇧🇷

#iac #space #nasa #spacex
  • 🚀 @bnp.space is building the Next Generation of Sustainable Rocket Fuel.

Join us in transforming the Aerospace Sector with technological and sustainable innovations.
  • 🚀👨‍🚀 Machine Learning para Aplicações Espaciais

Participei do maior congresso de Astronáutica do mundo, e trouxe as novidades e oportunidade da área de dados e Machine Learning para você!

#iac #nasa #spacex
  • 🚀👨‍🚀ACOMPANHE NOS STORIES

Congresso Internacional de Astronáutica (IAC 2024), Milão 🇮🇹
  • Projeto Aeroespacial do final de semana!👨‍🚀
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.