fbpx
Sigmoidal
No Result
View All Result
  • Home
  • Data Science
    Data Science no exterior - como fazer uma Cover Letter

    Como escrever uma Cover Letter poderosa para Data Science

    GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro

    Aprenda Data Science ou pague o preço de uma decisão errada

    Como a França usou Inteligência Artificial para detectar 20 mil piscinas

    Como a França usou Inteligência Artificial para detectar 20 mil piscinas

    ChatGPT: A Inteligência Artificial que vai escrever seus códigos

    ChatGPT: A Inteligência Artificial que vai escrever seus códigos

    7 livros essenciais para aprender Data Science em 2023

    7 livros essenciais para aprender Data Science em 2023

    Como a banda Metallica usa Data Science

    Como a banda Metallica usa Data Science

    Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

    Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

    Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

    Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

    Python para análise de ações e investimentos

    Python para análise de ações e investimentos

    Trending Tags

    • Python
      Como usar o DALL-E 2 para gerar imagens a partir de textos

      Como usar o DALL-E 2 para gerar imagens a partir de textos

      aprenda python do zero - curso gratuito

      Projeto Python: um plano à prova de desculpas

      Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

      Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

      Projeto Python do Zero: evento 100% gratuito

      Projeto Python do Zero: evento 100% gratuito

      Aprenda Python e se destaque no mercado

      Aprenda Python e se destaque no mercado

      Python para análise de ações e investimentos

      Python para análise de ações e investimentos

      Como fazer gráficos rotulados em Python

      Como fazer gráficos rotulados em Python

      Trabalhando com Dados Desbalanceados

      Trabalhando com Dados Desbalanceados

      Detector de Fadiga usando Python

      Detector de Fadiga usando Python

      Trending Tags

      • Tutoriais
        Crie um sistema de vigilância com drones e Deep Learning

        Crie um sistema de vigilância com drones e Deep Learning

        Detector de Fadiga usando Python

        Detector de Fadiga usando Python

        Reduzindo Turnover Com Machine Learning

        Reduzindo Turnover Com Machine Learning

        Séries Temporais (Time Series) com Python

        Séries Temporais (Time Series) com Python

        Como Analisar Ações da Bolsa com Python

        Como Analisar Ações da Bolsa com Python

        Como criar gráficos interativos usando Plotly e Python

        Como criar gráficos interativos usando Plotly e Python

        Como salvar seu modelo de Machine Learning

        Como salvar seu modelo de Machine Learning

        Como lidar com dados desbalanceados?

        Como lidar com dados desbalanceados?

        Big Data: Como instalar o PySpark no Google Colab

        Big Data: Como instalar o PySpark no Google Colab

        Trending Tags

        • Vídeos
          Como usar o DALL-E 2 para gerar imagens a partir de textos

          Como usar o DALL-E 2 para gerar imagens a partir de textos

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          7 livros essenciais para aprender Data Science em 2023

          7 livros essenciais para aprender Data Science em 2023

          Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

          Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

          Crie um sistema de vigilância com drones e Deep Learning

          Crie um sistema de vigilância com drones e Deep Learning

          Python para análise de ações e investimentos

          Python para análise de ações e investimentos

          7 Livros de Data Science em 2021

          7 Livros de Data Science em 2021

          Detector de Fadiga usando Python

          Detector de Fadiga usando Python

          Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

          Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

          Trending Tags

          No Result
          View All Result
          Sigmoidal
          No Result
          View All Result

          Como salvar seu modelo de Machine Learning

          Carlos Melo by Carlos Melo
          junho 7, 2022
          in Blog, Data Science, Deep Learning, Machine Learning, Python, Tutoriais
          0
          Home Blog
          45
          SHARES
          1.5k
          VIEWS
          Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

          Se você precisa rodar seu Jupyter notebook inteiro a cada vez que precisa fazer uma nova previsão, saiba que tem uma maneira fácil de salvar o seu modelo de machine learning e usá-lo diretamente a partir de um arquivo.

          Notebooks são a melhor maneira que eu conheço para estruturar projetos de Data Science. Eles aceitam markdown, html e células de código – permitem documentação, organização e que sejam replicáveis por qualquer pessoa.

          Como salvar um modelo de machine learning em python

          No entanto, se a cada vez que você precisa usar aquele algoritmo XGBoost treinado você ainda roda todas as células novamente, saiba que existe uma biblioteca chamada pickle capaz de exportar estruturas de dados para um arquivo e importá-las em qualquer outra máquina.

          Ganhe tempo e aprenda a usar (em poucas linhas) esse pacote nos seus trabalhos de Data Science.

          Salvando modelos de machine learning com Pickle

          Na verdade, não são apenas modelos de machine learning que podem ser salvos em um arquivo no seu disco. Qualquer objeto em Python (strings, dicionários, listas, arrays) pode ser facilmente exportado.

          Opickle permite a serialização de objetos, ou seja, os transforma em sequências de bytes. Armazenando toda informação necessária, consegue reconstruir objetos aplicando uma lógica interna.

          Como salvar um modelo de machine learning usando Python e Pickle

          Para salvar um modelo, usa-se o método dump() – basta informar a variável referente ao objeto e o nome do arquivo a ser criado, como no exemplo abaixo.

          # salvar modelo
          import pickle
          # salvar o modelo XGBoost (xgb_model) no arquivo sale_xgboost.pkl
          with open('sale_xgboost.pkl', 'wb') as file:
              pickle.dump(xgb_model, file)

          Pronto. Um arquivo com o nome sale_xgboost.pkl foi criado na mesma pasta onde o código foi executado. Basta salvar ele, jogar para deploy ou usar quando precisar.

          Carregando modelos de machine learning com Pickle

          O mais comum em machine learning é você treinar e avaliar o modelo até ele estar satisfatório, e jogar para deploy dentro de uma aplicação web, por exemplo. Para isso, precisamos carregar o modelo.

          Esse caminho também é muito direto. Usando o método load() você consegue pegar o objeto que foi serializado (transformado em uma sequência de bytes) e convertê-lo novamente para o tipo original

          # Carregar modelo
          with open('sale_xgboost.pkl', 'rb') as f:
              model = pickle.load(f)

          Já que o modelo estava treinado e validado, uma vez carregado ele já esta pronto para ser usado. No caso da célula acima, o modelo de machine learning foi atribuído à variável model.

          Para se fazer uma previsão, é só usar o método o model.predict(X_test) (por exemplo) como você faria normalmente.

          Além dos modelos de machine learning

          Como eu te disse, você consegue salvar qualquer objeto do seu código Python, e não apenas modelos e algoritmos treinados em projetos de Ciência de Dados.

          Às vezes, tem-se apenas o resultado de uma query ou um array do numpy que você deseja salvar para reaproveitar depois (afinal, quando você reiniciar a IDE as variáveis serão eliminadas).

          Como salvar um modelo de machine learning usando Python e Pickle.

          Para todos esses casos, o pacote pickle vai te ajudar muito. O fato de ele vir junto com o próprio Python já ajuda muito, pois nem se perde tempo instalando componentes a mais

          Espero que tenha gostado da dica e que comece a usar essa técnica a partir de agora 🙂

          Tags: data sciencedeploymachine learningpicklepython
          Previous Post

          Como lidar com dados desbalanceados?

          Next Post

          Como criar gráficos interativos usando Plotly e Python

          Carlos Melo

          Carlos Melo

          Piloto da Força Aérea Brasileira por 16 anos, Mestre em Ciências e Tecnologias Aeroespaciais pelo ITA e criador do Sigmoidal.

          Related Posts

          Data Science no exterior - como fazer uma Cover Letter
          Artigos

          Como escrever uma Cover Letter poderosa para Data Science

          by rafael
          janeiro 16, 2023
          GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro
          Data Science

          Aprenda Data Science ou pague o preço de uma decisão errada

          by Carlos Melo
          janeiro 7, 2023
          Como usar o DALL-E 2 para gerar imagens a partir de textos
          Deep Learning

          Como usar o DALL-E 2 para gerar imagens a partir de textos

          by Carlos Melo
          dezembro 27, 2022
          Como a França usou Inteligência Artificial para detectar 20 mil piscinas
          Deep Learning

          Como a França usou Inteligência Artificial para detectar 20 mil piscinas

          by Carlos Melo
          janeiro 7, 2023
          ChatGPT: A Inteligência Artificial que vai escrever seus códigos
          Artigos

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          by Carlos Melo
          dezembro 20, 2022
          Next Post
          Como criar gráficos interativos usando Plotly e Python

          Como criar gráficos interativos usando Plotly e Python

          Deixe um comentário Cancelar resposta

          O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

          Destaques Sigmoidal

          Redes Neurais Multicamadas com Python e Keras

          Redes Neurais Multicamadas com Python e Keras

          junho 8, 2022
          7 Livros de Data Science em 2021

          7 Livros de Data Science em 2021

          agosto 3, 2022
          NFT e artes criadas por Inteligência Artificial

          NFT e artes criadas por Inteligência Artificial

          julho 8, 2022

          Navegar por Categoria

          • Artigos
          • Blog
          • Carreira
          • Colunistas
          • Cursos
          • Data Science
          • Deep Learning
          • Destaques
          • Entrevistas
          • Inglês
          • Iniciantes
          • Inteligência Artificial
          • Livros
          • Machine Learning
          • NFT
          • Notícias
          • Projetos
          • Python
          • Teoria
          • Tutoriais
          • Visão Computacional
          • Youtube

          Navegar por Tags

          ações cancer carreira ciencia de dados cientista de dados cnn Cursos dados desbalanceados data science data science na prática decision tree deep learning gis gpt-3 gráficos healthcare iniciantes jupyter kaggle keras machine learning matplotlib medicina mnist nft nlp pandas personal branding plotly portfólio profissão python random forest redes neurais redes neurais convolucionais regressão logística seaborn sklearn tensorflow titanic vagas visualização de dados vídeo youtube árvore de decisão
          Sigmoidal

          O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

          Seguir no Instagram

          Categorias

          • Artigos
          • Blog
          • Carreira
          • Colunistas
          • Cursos
          • Data Science
          • Deep Learning
          • Destaques
          • Entrevistas
          • Inglês
          • Iniciantes
          • Inteligência Artificial
          • Livros
          • Machine Learning
          • NFT
          • Notícias
          • Projetos
          • Python
          • Teoria
          • Tutoriais
          • Visão Computacional
          • Youtube

          Navegar por Tags

          ações cancer carreira ciencia de dados cientista de dados cnn Cursos dados desbalanceados data science data science na prática decision tree deep learning gis gpt-3 gráficos healthcare iniciantes jupyter kaggle keras machine learning matplotlib medicina mnist nft nlp pandas personal branding plotly portfólio profissão python random forest redes neurais redes neurais convolucionais regressão logística seaborn sklearn tensorflow titanic vagas visualização de dados vídeo youtube árvore de decisão

          Artigos Recentes

          • Como escrever uma Cover Letter poderosa para Data Science
          • Aprenda Data Science ou pague o preço de uma decisão errada
          • Como usar o DALL-E 2 para gerar imagens a partir de textos

          © 2023 Sigmoidal - Aprenda Data Science e Python na prática.

          No Result
          View All Result
          • Home
          • Artigos
          • Tutoriais
          • YouTube
          • Contato

          © 2023 Sigmoidal - Aprenda Data Science e Python na prática.

          Welcome Back!

          Login to your account below

          Forgotten Password?

          Retrieve your password

          Please enter your username or email address to reset your password.

          Log In

          Add New Playlist

          INSCRIÇÕES ABERTAS

          DATA SCIENCE

          NA PRÁTICA

          RESERVE SUA VAGA
          Are you sure want to unlock this post?
          Unlock left : 0
          Are you sure want to cancel subscription?