fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Como salvar seu modelo de Machine Learning

Carlos Melo por Carlos Melo
janeiro 10, 2020
em Blog, Data Science, Deep Learning, Machine Learning, Python, Tutoriais
1
116
COMPARTILHAMENTOS
3.9k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Se você precisa rodar seu Jupyter notebook inteiro a cada vez que precisa fazer uma nova previsão, saiba que tem uma maneira fácil de salvar o seu modelo de machine learning e usá-lo diretamente a partir de um arquivo.

Notebooks são a melhor maneira que eu conheço para estruturar projetos de Data Science. Eles aceitam markdown, html e células de código – permitem documentação, organização e que sejam replicáveis por qualquer pessoa.

Como salvar um modelo de machine learning em python

No entanto, se a cada vez que você precisa usar aquele algoritmo XGBoost treinado você ainda roda todas as células novamente, saiba que existe uma biblioteca chamada pickle capaz de exportar estruturas de dados para um arquivo e importá-las em qualquer outra máquina.

Ganhe tempo e aprenda a usar (em poucas linhas) esse pacote nos seus trabalhos de Data Science.

Salvando modelos de machine learning com Pickle

Na verdade, não são apenas modelos de machine learning que podem ser salvos em um arquivo no seu disco. Qualquer objeto em Python (strings, dicionários, listas, arrays) pode ser facilmente exportado.

Opickle permite a serialização de objetos, ou seja, os transforma em sequências de bytes. Armazenando toda informação necessária, consegue reconstruir objetos aplicando uma lógica interna.

Como salvar um modelo de machine learning usando Python e Pickle

Para salvar um modelo, usa-se o método dump() – basta informar a variável referente ao objeto e o nome do arquivo a ser criado, como no exemplo abaixo.

# salvar modelo
import pickle
# salvar o modelo XGBoost (xgb_model) no arquivo sale_xgboost.pkl
with open('sale_xgboost.pkl', 'wb') as file:
    pickle.dump(xgb_model, file)

Pronto. Um arquivo com o nome sale_xgboost.pkl foi criado na mesma pasta onde o código foi executado. Basta salvar ele, jogar para deploy ou usar quando precisar.

Carregando modelos de machine learning com Pickle

O mais comum em machine learning é você treinar e avaliar o modelo até ele estar satisfatório, e jogar para deploy dentro de uma aplicação web, por exemplo. Para isso, precisamos carregar o modelo.

Esse caminho também é muito direto. Usando o método load() você consegue pegar o objeto que foi serializado (transformado em uma sequência de bytes) e convertê-lo novamente para o tipo original

# Carregar modelo
with open('sale_xgboost.pkl', 'rb') as f:
    model = pickle.load(f)

Já que o modelo estava treinado e validado, uma vez carregado ele já esta pronto para ser usado. No caso da célula acima, o modelo de machine learning foi atribuído à variável model.

Para se fazer uma previsão, é só usar o método o model.predict(X_test) (por exemplo) como você faria normalmente.

Além dos modelos de machine learning

Como eu te disse, você consegue salvar qualquer objeto do seu código Python, e não apenas modelos e algoritmos treinados em projetos de Ciência de Dados.

Às vezes, tem-se apenas o resultado de uma query ou um array do numpy que você deseja salvar para reaproveitar depois (afinal, quando você reiniciar a IDE as variáveis serão eliminadas).

Como salvar um modelo de machine learning usando Python e Pickle.

Para todos esses casos, o pacote pickle vai te ajudar muito. O fato de ele vir junto com o próprio Python já ajuda muito, pois nem se perde tempo instalando componentes a mais

Espero que tenha gostado da dica e que comece a usar essa técnica a partir de agora 🙂

Compartilhar8Compartilhar46Enviar
Post Anterior

Como lidar com dados desbalanceados?

Próximo Post

Como criar gráficos interativos usando Plotly e Python

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Carlos Melo da Pós Graduação em Data Science do Sigmoidal
Aeroespacial

Oportunidades no Setor Espacial para Cientistas de Dados

por Carlos Melo
janeiro 15, 2025
Visão Computacional

Processamento de Nuvens de Pontos com Open3D e Python

por Carlos Melo
janeiro 2, 2025
Próximo Post
Como criar gráficos interativos usando Plotly e Python

Como criar gráficos interativos usando Plotly e Python

Comentários 1

  1. Leandro says:
    4 anos atrás

    Obrigado pela dica. Vai me ajudar muito nos meus projetos.

    Responder

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    450 compartilhamentos
    Compartilhar 180 Tweet 113
  • Equalização de Histograma com OpenCV e Python

    112 compartilhamentos
    Compartilhar 45 Tweet 28
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    385 compartilhamentos
    Compartilhar 154 Tweet 96
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    368 compartilhamentos
    Compartilhar 147 Tweet 92
  • Redes Neurais Convolucionais com Python

    92 compartilhamentos
    Compartilhar 37 Tweet 23
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

janeiro 25, 2025
Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

janeiro 22, 2025
Trump revoga decreto de Biden sobre regulação de Inteligência Artificial

Trump revoga decreto de Biden sobre regulação de Inteligência Artificial

janeiro 21, 2025

Seguir

  • 🇺🇸 Green Card por Habilidade Extraordinária em Data Science e Machine Learning

Após nossa mudança para os EUA, muitas pessoas me perguntaram como consegui o Green Card tão rapidamente. Por isso, decidi compartilhar um pouco dessa jornada.

O EB-1A é um dos vistos mais seletivos para imigração, sendo conhecido como “The Einstein Visa”, já que o próprio Albert Einstein obteve sua residência permanente através desse processo em 1933.

Apesar do apelido ser um exagero moderno, é fato que esse é um dos vistos mais difíceis de conquistar. Seus critérios rigorosos permitem a obtenção do Green Card sem a necessidade de uma oferta de emprego.

Para isso, o aplicante precisa comprovar, por meio de evidências, que está entre os poucos profissionais de sua área que alcançaram e se mantêm no topo, demonstrando um histórico sólido de conquistas e reconhecimento.

O EB-1A valoriza não apenas um único feito, mas uma trajetória consistente de excelência e liderança, destacando o conjunto de realizações ao longo da carreira.

No meu caso específico, após escrever uma petição com mais de 1.300 páginas contendo todas as evidências necessárias, tive minha solicitação aprovada pelo USCIS, órgão responsável pela imigração nos Estados Unidos.

Fui reconhecido como um indivíduo com habilidade extraordinária em Data Science e Machine Learning, capaz de contribuir em áreas de importância nacional, trazendo benefícios substanciais para os EUA.

Para quem sempre me perguntou sobre o processo de imigração e como funciona o EB-1A, espero que esse resumo ajude a esclarecer um pouco mais. Se tiver dúvidas, estou à disposição para compartilhar mais sobre essa experiência! #machinelearning #datascience
  • 🚀Domine a tecnologia que está revolucionando o mundo.

A Pós-Graduação em Visão Computacional & Deep Learning prepara você para atuar nos campos mais avançados da Inteligência Artificial - de carros autônomos a robôs industriais e drones.

🧠 CARGA HORÁRIA: 400h
💻 MODALIDADE: EAD
📅 INÍCIO DAS AULAS: 29 de maio

Garanta sua vaga agora e impulsione sua carreira com uma formação prática, focada no mercado de trabalho.

Matricule-se já!

#deeplearning #machinelearning #visãocomputacional
  • Green Card aprovado! 🥳 Despedida do Brasil e rumo à nova vida nos 🇺🇸 com a família!
  • Haverá sinais… aprovado na petição do visto EB1A, visto reservado para pessoas com habilidades extraordinárias!

Texas, we are coming! 🤠
  • O que EU TENHO EM COMUM COM O TOM CRUISE??

Clama, não tem nenhuma “semana” aberta. Mas como@é quinta-feira (dia de TBT), olha o que eu resgatei!

Diretamente do TÚNEL DO TEMPO: Carlos Melo &Tom Cruise!
  • Bate e Volta DA ITÁLIA PARA A SUÍÇA 🇨🇭🇮🇹

Aproveitei o dia de folga após o Congresso Internacional de Astronáutica (IAC 2024) e fiz uma viagem “bate e volta” para a belíssima cidade de Lugano, Suíça.

Assista ao vlog e escreve nos comentários se essa não é a cidade mais linda que você já viu!

🔗 LINK NOS STORIES
  • Um paraíso de águas transparentes, e que fica no sul da Suíça!🇨🇭 

Conheça o Lago de Lugano, cercado pelos Alpes Suíços. 

#suiça #lugano #switzerland #datascience
  • Sim, você PRECISA de uma PÓS-GRADUAÇÃO em DATA SCIENCE.
  • 🇨🇭Deixei minha bagagem em um locker no aeroporto de Milão, e vim aproveitar esta última semana nos Alpes suíços!
  • Assista à cobertura completa no YT! Link nos stories 🚀
  • Traje espacial feito pela @axiom.space em parceria com a @prada 

Esse traje será usados pelos astronautas na lua.
para acompanhar as novidades do maior evento sobre espaço do mundo, veja os Stories!

#space #nasa #astronaut #rocket
  • INTERNATIONAL ASTRONAUTICAL CONGRESS - 🇮🇹IAC 2024🇮🇹

Veja a cobertura completa do evento nos DESTAQUES do meu perfil.

Esse é o maior evento de ESPAÇO do mundo! Eu e a @bnp.space estamos representando o Brasil nele 🇧🇷

#iac #space #nasa #spacex
  • 🚀 @bnp.space is building the Next Generation of Sustainable Rocket Fuel.

Join us in transforming the Aerospace Sector with technological and sustainable innovations.
  • 🚀👨‍🚀 Machine Learning para Aplicações Espaciais

Participei do maior congresso de Astronáutica do mundo, e trouxe as novidades e oportunidade da área de dados e Machine Learning para você!

#iac #nasa #spacex
  • 🚀👨‍🚀ACOMPANHE NOS STORIES

Congresso Internacional de Astronáutica (IAC 2024), Milão 🇮🇹
  • Projeto Aeroespacial do final de semana!👨‍🚀
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.