fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Como Implementar Regressão Linear com Python

Carlos Melo por Carlos Melo
julho 28, 2019
em Blog, Data Science
5
147
COMPARTILHAMENTOS
4.9k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

O campo de Machine Learning oferece tantas opções de algoritmos que é muito difícil alguém conhecer todos e se manter atualizado a cada dia.

A escolha do algoritmo correto tem um enorme impacto na qualidade da solução, por isso é importante não apenas usar uma biblioteca pronta (sem ter a mínima ideia do que está por trás), mas ter pelo menos uma noção da teoria por trás dos modelos e algoritmos que você implementa.

Regressão Linear com scikit-learn e Python

Uma das primeiras técnicas que a(o) cientista de dados costuma ter contato no começo dos seus estudos é a Análise de Regressão, onde aprende a implementar um modelo de Regressão Linear Simples.

Entretanto, muita gente acaba apenas decorando como usar o scikit-learn e nunca mais vai atrás do conceito estatístico que está por trás da Regressão Linear.

Neste post, quero trazer uma conceituação um pouco mais aprofundada que o normal. O objetivo é apenas convidar você a despertar esse lado curioso pelas coisas que implementamos no dia-a-dia, afinal é isso que vai te destacar da média.

Acessar Código Fonte

Para ir acompanhar o código deste artigo e conseguir replicar exatamente os resultados, acesse o notebook com todo o código no repositório do Github clicando no botão acima. 

E se você está aprendendo e quer saber como se tornar um cientista de dados, leia este artigo do nosso blog 🙂

O que é Análise de Regressão

O objetivo da análise de regressão é explorar o relacionamento existente entre duas ou mais variáveis, visando obter informações sobre uma delas a partir dos valores conhecidas das outras.

Confuso? Simplificadamente, a frase aí de cima quis dizer que a análise de regressão busca entender o relacionamento entre variáveis, e esse relacionamento pode ser representado por uma equação matemática.

Regressão Linear com Python
Qual a relação que as variáveis de entrada tem com a saída “Preço”?

Vamos supor que você queira saber o preço de venda de uma casa sua e acredita que existe um relacionamento entre as variáveis que você está considerando (área construída, número de quartos e localização) com esse preço.

Seria possível fazer uma análise de regressão baseado nas outras casas da cidade, obter os pesos para os parâmetros em um modelo Regressão Linear e inferir qual o preço de venda que você deve colocar.

Relação não determinística

Um ponto importante, mas muito desconhecido, é que nos nossos problemas do cotidiano, muitas variáveis x e y aparentam estar relacionadas uma com a outra, porém de maneira não determinística.

Uma relação determínistica, por exemplo, é quando queremos saber a distância percorrida por um carro, mantendo velocidade constante $v$ ao longo de $\Delta t$ segundos. Nesse exemplo, sabemos que a distância percorrida será $\Delta s = v * \Delta t$, pois as variáveis estão relacionadas deterministicamente.

Um exemplo de variáveis relacionadas de maneira não determinística é se quisessemos saber $y = \text{tamanho do vocabulário de uma criança}$ sendo $x = \text{idade dessa criança}$. Não é algo exato.

Para entender melhor essa relação determinística, veja os gráficos que vamos gerar em Python abaixo.

# importar pacotes necessários
import numpy as np
import matplotlib.pyplot as plt
# exemplo de plots determinísticos
np.random.seed(42)
det_x = np.arange(0,10,0.1)
det_y = 2 * det_x + 3
# exemplo de plots não determinísticos
non_det_x = np.arange(0, 10, 0.1)
non_det_y = 2 * non_det_x + np.random.normal(size=100)
# plotar determinísticos vs. não determinísticos
fig, axs = plt.subplots(1, 2, figsize=(10,4), constrained_layout=True)
axs[0].scatter(det_x, det_y, s=2)
axs[0].set_title("Determinístico")
axs[1].scatter(non_det_x, non_det_y, s=2)
axs[1].set_title("Não Determinístico")
plt.show()

Olhando rapidamente você já consegue ver uma diferença importante, que apesar dos dois gráficos estarem mostrando pontos que se espalham sobre uma “reta virtual”, um deles não segue um padrão exato, determinístico. Parece que há algum tipo de aleatoriedade envolvida.

Regressão Linear em Python
Veja como os pontos da esquerdas cabem perfeitamente em uma reta, mas os da direita não, pois estão relacionados de maneira não determinística.

Ou seja, nos modelos de Regressão Linear que usamos em Machine Learning, não temos uma relação perfeita entre as variáveis, pois as observações do dataset não cabem exatamente em uma reta.

Isso significa que temos um modelo probabilístico, que captura a aleatoriedade que é inerente de qualquer processo do mundo real.

Pense: você consegue traçar uma reta pegando todos os pontos no gráfico da esquerda? E consegue traçar uma reta pegando todos os pontos no gráfico da direita?

Voltando para aquele exemplo de vender sua casa, basta imaginar que seu vizinho tem uma casa do mesmo tamanho, mesmo número de quartos, mesma localização, porém elas dificilmente teriam o mesmo preço exato.

É característica de uma pessoa realmente inteligente ser movida pela estatística.

George Bernard Shaw

O modelo de Regressão Linear Simples

Para representar a relação entre uma variável dependente ($y$) e uma variável independente ($x$), usamos o modelo




<math xmlns=

que determina uma linha reta com inclinação $\beta_1$ e intercepto $\beta_0$, com a variável aleatória (erro) $\varepsilon$, considerada normalmente distribuída com $E(\varepsilon) = 0$ e $V(\varepsilon) = \sigma^2$.

Para simplificar, vamos assumir a premissa de que o valor médio da variável $\varepsilon$ para um dado valor de $x$ é $0$. Dessa maneira, a equação da seguinte forma:




<math xmlns=

Quando a gente implementa um modelo de Regressão Linear com o scikit-learn, a gente quer encontrar os valores dos parâmetros $\beta_0$ e $\beta_1$ que melhor representam o relacionamento entre as variáveis.

Antes de você chamar o fit() do seu modelo, $\beta_0$ e $\beta_1$ são parâmetros totalmente desconhecidos.

Implementando Regressão Linear em Python com o Scikit-learn

Olhando no gráfico acima, você é capaz de dizer qual reta seria mais plausível?

Parece óbvio que é a reta verde, porém não seria possível essa análise visual caso tivessemos centenas de variáveis. E também temos um problema, o computador não consegue “olhar” para ver qual reta fica melhor.

A questão é, como encontrar boas estimativas de $\beta_0$ e $\beta_1$ para que nosso modelo forneça boas estimativas?

Se até agora tudo ainda está confuso para você, e você não consegue enxergar uma reta na equação acima, eu aconselho você revisar a equação fundamental da reta, que ficou esquecida na sua cabeça desde a época de ensino médio.

Estimando os parâmetros do modelo

De acordo com (DEVORE, 2014), um método usado para verificar se uma reta oferece um bom ajuste aos dados é o Método dos Mínimos Quadrados. Por esse método, o desvio vertical do ponto $(x_i, y_i)$ da reta $y=\beta_0 + \beta_1x$ é:




<math xmlns=

A soma dos quadrados de tais desvios verticais dos pontos $(x_1, y_1), \dots, (x_n, y_n)$ à reta é, portanto,




<math xmlns=

Uma reta é razoável se as distâncias verticais (desvios) dos pontos analisados em relação à reta são pequenas.

Método dos Mínimos Quadrados em Python

Ou seja, a reta que tem o melhor ajuste possível é aquela na qual se tem a menor soma possível de desvios quadrados. Os valores de minimização $\beta_0$ e $\beta_1$ são encontrados quando se resolvem as derivadas parciais abaixo, igualando-as a $0$.




<math xmlns=




<math xmlns=

Essa etapa requer um conhecimento mais avançado de cálculo, e eu não vou entrar em mais detalhes. Tudo que você precisa saber é que a cada iteração do algoritmo a gente espera encontrar a menor soma possível de desvios quadrados.

Implementando Regressão Linear com Python

Para ver na prática uma aplicação simples e direta da Regressão Linear, vamos usar as variáveis que plotamos lá em cima, non_det_x e non_det_y.

Lembrando que aqui eu estou ignorando completamente as etapas de split entre datasets de treino e teste ou qualquer outro tipo de etapa. O objetivo é apenas encontrar uma reta com um fit ideal aos nossos pontos.

# importar os pacotes necessários
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# criar modelo linear e otimizar
lm_model = LinearRegression()
lm_model.fit(non_det_x.reshape(-1,1), non_det_y)
# extrair coeficientes
slope = lm_model.coef_
intercept = lm_model.intercept_

Como temos apenas uma variável, nosso x é um vetor (1 dimensão).

Após minimizar a função custo e encontrar o melhor fit os parâmetros da equação da reta que buscamos estarão armazenados como atributos de lm_model, onde $\beta_0 = \text{intercept_}$ e $\beta_1 = \text{coef_}$.

Imprimindo esses parâmetros a gente vê quais valores numéricos melhor representam nossa reta para o modelo de Regressão Linear:

# imprimir os valores encontrados para os parâmetros
print("b0: \t{}".format(intercept))
print("b1: \t{}".format(slope[0]))
# Será impresso os seguintes valores:
# b0: 	-0.17281285407737457
# b1: 	2.0139325932693497

E agora vamos plotar a reta, com os valores de parâmetros obtidos, sobrepondo ela aos pontos e ver como essa solução parece plausível visualmente.

# plotar pontos e retas com parâmetros otimizados
plt.scatter(non_det_x, non_det_y, s=3)
plt.plot(non_det_x, (non_det_x * slope + intercept), color='r')
plt.show()

Resultado da Regressão Linear com Python

E é isso! Essa solução parece, de fato, atender ao nosso problema.

Agora você sabe não apenas implementar uma Regressão Linear, que é feito com pouquíssimas linhas de código, mas consegue entender a lógica por trás do código 🙂

Resumo

Eu aposto que agora você conseguiu entender o funcionamento básico de um modelo de Regressão Linear, vendo tanto visualmente (como a reta vai “melhorando” a cada iteração) quanto absorvendo conceitos (com a matemática que foi exposta).

Este artigo foi muito mais teórico que aplicação de técnicas de Data Science ou Machine Learning, e tudo isso propositalmente. Ao limitar para uma variável, conseguimos realizar os plots em 2 dimensões  e acompanhar mais facilmente tudo.

Obviamente, todo essa teoria pode ser extrapolada para problemas mais complexos envolvendo múltiplas variáveis. A lógica é a mesma!

Lembre-se que o que vai te diferenciar das outras pessoas, da média, é o conceito que você sabe a mais e a criatividade para pensar em soluções fora-da-caixa. 

Para receber sempre conteúdos novos e exclusivos, inscreva-se abaixo com seu e-mail e receba todo o material de altíssima qualidade no conforto da sua inbox! Aproveite também para me seguir no Instagram, pois estou sempre gerando conteúdos de valor por lá 🙂

Compartilhar10Compartilhar59Enviar
Post Anterior

O que faz um cientista de dados: tudo sobre esta nova profissão

Próximo Post

Data Science: Investigando o naufrágio do Titanic [Pt. 2]

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

O Que é Amostragem e Quantização no Processamento de Imagens
Artigos

O Que é Amostragem e Quantização no Processamento de Imagens

por Carlos Melo
junho 20, 2025
Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Carlos Melo da Pós Graduação em Data Science do Sigmoidal
Aeroespacial

Oportunidades no Setor Espacial para Cientistas de Dados

por Carlos Melo
janeiro 15, 2025
Próximo Post
Data Science: Investigando o naufrágio do Titanic [Pt. 2]

Data Science: Investigando o naufrágio do Titanic [Pt. 2]

Comentários 5

  1. Paulo says:
    6 anos atrás

    Como faz pra traçar uma reta na distancia do ponto ate a reta? n esta no codigo

    Responder
    • Carlos Melo Carlos Melo says:
      6 anos atrás

      A própria função do Scikit-learn já faz essa conta para você. Mas basicamente se trata de calcular a distância euclidiana 🙂

      Responder
  2. Gilberto says:
    4 anos atrás

    Estou iniciando os estudos em ml e o artigo foi muito útil. Parabéns !!!

    Responder
  3. Adriana says:
    4 anos atrás

    Excelente explicação, muito didática. Estou tendo o primeiro contato com Machine Learning.

    Responder
  4. Giovanna says:
    4 anos atrás

    Um exercício meu pede que o valor de x seja determinado pelo usuário via comando input. O que eu tô tentando não está funcionando. Alguém consegue me dar uma luz?

    Responder

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    482 compartilhamentos
    Compartilhar 193 Tweet 121
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    405 compartilhamentos
    Compartilhar 162 Tweet 101
  • Processamento de Nuvens de Pontos com Open3D e Python

    43 compartilhamentos
    Compartilhar 17 Tweet 11
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    381 compartilhamentos
    Compartilhar 152 Tweet 95
  • O Que é Amostragem e Quantização no Processamento de Imagens

    5 compartilhamentos
    Compartilhar 2 Tweet 1
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

janeiro 25, 2025
Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

janeiro 22, 2025

Seguir

  • 🎙️ Corte da minha conversa com o Thiago Nigro, no PrimoCast #224

Falamos sobre por que os dados são considerados o novo petróleo - para mim, dados são o novo bacon!

Expliquei como empresas que dominam a ciência de dados ganham vantagem real no mercado. Não por armazenarem mais dados, mas por saberem o que fazer com eles.

Também conversamos sobre as oportunidades para quem quer entrar na área de tecnologia. Data Science é uma das áreas mais democráticas que existem. Não importa sua idade, formação ou cidade. O que importa é a vontade de aprender.

Se você quiser ver o episódio completo, é só buscar por Primocast 224.

“O que diferencia uma organização de outra não é a capacidade de armazenamento de dados; é a capacidade de seu pessoal extrair conhecimento desses dados.”

#machinelearning #datascience #visãocomputacional #python
  • 📸 Palestra que realizei no palco principal da Campus Party #15, o maior evento de tecnologia da América Latina!

O tema que escolhi foi "Computação Espacial", onde destaquei as inovações no uso de visão computacional para reconstrução 3D e navegação autônoma.

Apresentei técnicas como Structure-from-Motion (SFM), uma técnica capaz de reconstruir cidades inteiras (como Roma) usando apenas fotos publicadas em redes sociais, e ORB-SLAM, usada por drones e robôs para mapeamento em tempo real.

#visãocomputacional #machinelearning #datascience #python
  • ⚠️❗ Não deem ideia para o Haddad! 

A França usou Inteligência Artificial para detectar mais de 20 mil piscinas não declaradas a partir de imagens aéreas.

Com modelos de Deep Learning, o governo identificou quem estava devendo imposto... e arrecadou mais de €10 milhões com isso.

Quer saber como foi feito? Veja no post completo no blog do Sigmoidal: https://sigmoidal.ai/como-a-franca-usou-inteligencia-artificial-para-detectar-20-mil-piscinas/

#datascience #deeplearning #computerVision #IA
  • Como aprender QUALQUER coisa rapidamente?

💡 Comece com projetos reais desde o primeiro dia.
📁 Crie um portfólio enquanto aprende. 
📢 E compartilhe! Poste, escreva, ensine. Mostre o que está fazendo. Documente a jornada, não o resultado.

Dois livros que mudaram meu jogo:
-> Ultra Aprendizado (Scott Young)
-> Uma Vida Intelectual (Sertillanges)

Aprenda em público. Evolua fazendo.

#ultralearning #estudos #carreira
  • Como eu usava VISÃO COMPUTACIONAL no Centro de Operações Espaciais, planejando missões de satélites em situações de desastres naturais.

A visão computacional é uma fronteira fascinante da tecnologia que transforma a forma como entendemos e respondemos a desastres e situações críticas. 

Neste vídeo, eu compartilho um pouco da minha experiência como Engenheiro de Missão de Satélite e especialista em Visão Computacional. 

#VisãoComputacional #DataScience #MachineLearning #Python
  • 🤔 Essa é a MELHOR linguagem de programação, afinal?

Coloque sua opinião nos comentários!

#python #datascience #machinelearning
  • 💘 A história de como conquistei minha esposa... com Python!

Lá em 2011, mandei a real:

“Eu programo em Python.”
O resto é história.
  • Para rotacionar uma matriz 2D em 90°, primeiro inverto a ordem das linhas (reverse). Depois, faço a transposição in-place. Isso troca matrix[i][j] com matrix[j][i], sem criar outra matriz. A complexidade segue sendo O(n²), mas o uso de memória se mantém O(1).

Esse padrão aparece com frequência em entrevistas. Entender bem reverse + transpose te prepara para várias variações em matrizes.

#machinelearning #visaocomputacional #leetcode
  • Na última aula de estrutura de dados, rodei um simulador de labirintos para ensinar como resolver problemas em grids e matrizes.

Mostrei na prática a diferença entre DFS e BFS. Enquanto a DFS usa stacks, a BFS utiliza a estrutura de fila (queue). Cada abordagem tem seu padrão de propagação e uso ideal.

#machinelearning #visaocomputacional #algoritmos
  • 🔴 Live #2 – Matrizes e Grids: Fundamentos e Algoritmos Essenciais

Na segunda aula da série de lives sobre Estruturas de Dados e Algoritmos, o foco será em Matrizes e Grids, estruturas fundamentais em problemas de caminho, busca e representação de dados espaciais.

📌 O que você vai ver:

Fundamentos de matrizes e grids em programação
Algoritmos de busca: DFS e BFS aplicados a grids
Resolução ao vivo de problemas do LeetCode

📅 Terça-feira, 01/07, às 22h no YouTube 
🎥 (link nos Stories)

#algoritmos #estruturasdedados #leetcode #datascience #machinelearning
  • 💡 Quer passar em entrevistas técnicas?
Veja essa estratégia para você estudar estruturas de dados em uma sequência lógica e intuitiva.
⠀
👨‍🏫 NEETCODE.io
⠀
🚀 Marque alguém que também está se preparando!

#EntrevistaTecnica #LeetCode #MachineLearning #Data Science
  • Live #1 – Arrays & Strings: Teoria e Prática para Entrevistas Técnicas

Segunda-feira eu irei começar uma série de lives sobre Estruturas de Dados e Algoritmos. 

No primeiro encontro, falarei sobre um dos tipos de problemas mais cobrados em entrevistas: Arrays e Strings.

Nesta aula, você vai entender a teoria por trás dessas estruturas, aprender os principais padrões de resolução de problemas e aplicar esse conhecimento em exercícios selecionados do LeetCode.

📅 Segunda-feira, 23/06, às 21h no YouTube

🎥 (link nos Stories)

#machinelearning #datascience #cienciadedados #visãocomputacional
  • 🤖 Robôs que escalam, nadam, voam e rastejam.

Acabei de ver o que a Gecko Robotics está fazendo — e é impressionante.
Eles usam robôs que escalam, rastejam, nadam e voam para coletar dados estruturais de ativos físicos como navios, refinarias e usinas de energia.

Depois, tudo isso entra numa plataforma de AI chamada Cantilever, que combina:

✅ Ontologias baseadas em princípios físicos
✅ Edge robotics + sensores fixos
✅ Modelos preditivos para manutenção e operação

É como se estivessem criando um Digital Twin confiável de infraestruturas críticas — com dados de verdade, coletados direto do mundo físico.

Ah, e agora alcançaram status de unicórnio 🦄:
$1.25B de valuation, com foco em defesa, energia e manufatura pesada.

#MachineLearning #Robótica #MLOps #visãocomputacional
  • 🚨 FALTAM 2 DIAS!
As inscrições para a nova Pós em Visão Computacional & Deep Learning encerram neste domingo, 8 de junho, às 23h59.

Essa é sua chance de dominar IA aplicada, com foco total em projetos, e conquistar oportunidades como Machine Learning Engineer ou Computer Vision Specialist, no Brasil ou no exterior.

🔗 Link na bio para garantir sua vaga com bônus e valor promocional!

#VisaoComputacional #DeepLearning
  • 🤔🤔🤔 verdade ou mentira??
  • 🚀 NOVA PÓS EM VISÃO COMPUTACIONAL!

Seja especialista em Visão Computacional e Deep Learning! 

✔️ 400h de conteúdo
✔️ Curso reconhecido pelo MEC
✔️ Foco em prática e projetos reais

💡 1 CURSO, 2 CARREIRAS
Atue como Machine Learning Engineer E Computer Vision Engineer! 

📅 Aula de lançamento: 1º de junho, 20h

📍 Link na bio. Ative o lembrete e participe!

#computervision #machinelearning #datascience
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.