fbpx
Sigmoidal
No Result
View All Result
  • Home
  • Data Science
    Data Science no exterior - como fazer uma Cover Letter

    Como escrever uma Cover Letter poderosa para Data Science

    GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro

    Aprenda Data Science ou pague o preço de uma decisão errada

    Como a França usou Inteligência Artificial para detectar 20 mil piscinas

    Como a França usou Inteligência Artificial para detectar 20 mil piscinas

    ChatGPT: A Inteligência Artificial que vai escrever seus códigos

    ChatGPT: A Inteligência Artificial que vai escrever seus códigos

    7 livros essenciais para aprender Data Science em 2023

    7 livros essenciais para aprender Data Science em 2023

    Como a banda Metallica usa Data Science

    Como a banda Metallica usa Data Science

    Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

    Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

    Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

    Use a estratégia da Apollo 13 para conseguir uma vaga no mercado

    Python para análise de ações e investimentos

    Python para análise de ações e investimentos

    Trending Tags

    • Python
      Como usar o DALL-E 2 para gerar imagens a partir de textos

      Como usar o DALL-E 2 para gerar imagens a partir de textos

      aprenda python do zero - curso gratuito

      Projeto Python: um plano à prova de desculpas

      Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

      Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

      Projeto Python do Zero: evento 100% gratuito

      Projeto Python do Zero: evento 100% gratuito

      Aprenda Python e se destaque no mercado

      Aprenda Python e se destaque no mercado

      Python para análise de ações e investimentos

      Python para análise de ações e investimentos

      Como fazer gráficos rotulados em Python

      Como fazer gráficos rotulados em Python

      Trabalhando com Dados Desbalanceados

      Trabalhando com Dados Desbalanceados

      Detector de Fadiga usando Python

      Detector de Fadiga usando Python

      Trending Tags

      • Tutoriais
        Crie um sistema de vigilância com drones e Deep Learning

        Crie um sistema de vigilância com drones e Deep Learning

        Detector de Fadiga usando Python

        Detector de Fadiga usando Python

        Reduzindo Turnover Com Machine Learning

        Reduzindo Turnover Com Machine Learning

        Séries Temporais (Time Series) com Python

        Séries Temporais (Time Series) com Python

        Como Analisar Ações da Bolsa com Python

        Como Analisar Ações da Bolsa com Python

        Como criar gráficos interativos usando Plotly e Python

        Como criar gráficos interativos usando Plotly e Python

        Como salvar seu modelo de Machine Learning

        Como salvar seu modelo de Machine Learning

        Como lidar com dados desbalanceados?

        Como lidar com dados desbalanceados?

        Big Data: Como instalar o PySpark no Google Colab

        Big Data: Como instalar o PySpark no Google Colab

        Trending Tags

        • Vídeos
          Como usar o DALL-E 2 para gerar imagens a partir de textos

          Como usar o DALL-E 2 para gerar imagens a partir de textos

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          ChatGPT: A Inteligência Artificial que vai escrever seus códigos

          7 livros essenciais para aprender Data Science em 2023

          7 livros essenciais para aprender Data Science em 2023

          Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

          Entrevista com Rodrigo Gianotto, CTO do Grupo Primo

          Crie um sistema de vigilância com drones e Deep Learning

          Crie um sistema de vigilância com drones e Deep Learning

          Python para análise de ações e investimentos

          Python para análise de ações e investimentos

          7 Livros de Data Science em 2021

          7 Livros de Data Science em 2021

          Detector de Fadiga usando Python

          Detector de Fadiga usando Python

          Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

          Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

          Trending Tags

          No Result
          View All Result
          Sigmoidal
          No Result
          View All Result

          Como a banda Metallica usa Data Science

          Carlos Melo by Carlos Melo
          dezembro 26, 2022
          in Artigos, Blog, Data Science, Inteligência Artificial, Machine Learning
          1
          Home Artigos
          7
          SHARES
          221
          VIEWS
          Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

          Você sabia que o Metallica escolhe seu setlist de acordo com as estatísticas disponibilizadas pelo Spotify? Aqui, não só você verá isso, mas também como funcionam o sistema de recomendações e o recurso retrospectiva dessa gigante do streaming de música.

          Comparando os hábitos e a cultura da população média mundial no tempo, percebemos como a tecnologia produziu mudanças na sociedade. As redes sociais e os aplicativos como o Tinder, por exemplo, mudaram muito a forma como conhecemos e interagimos com as pessoas hoje em dia: se por um lado facilitou, por outro tornou as relações mais superficiais (liquidez das relações, já dizia Bauman).

          “Você tem um artista como o Metallica, que muda o setlist deles de cidade para cidade apenas olhando os dados do Spotify para ver quais as músicas mais populares da cidade.“

          Daniel Ek

          Com a indústria da música, o efeito não foi tão diferente assim. Parte considerável da receita das bandas, o disco de vinil e o CD passaram a ser consumidos apenas por fãs das bandas.

          No entanto, na música um componente ainda permanece, em essência, o mesmo: os shows. As apresentações musicais continuam sendo presenciais (salvo as lives, as quais marcaram o período pandêmico) e tendo uma enorme importância para a receita das bandas e para seus fãs.

          Em função dessa relevância, os grupos musicais planejam a estrutura do palco (iluminação, aparelhos de som, cenário) até o famoso setlist. Certamente esse, a lista de músicas, é o aspecto principal de um show, aquilo sobre o qual o fã que comprou o ingresso quer saber em primeiro lugar.

          Setlist Baseado em Dados

          Ora, assim como as grandes empresas fazem uso dos dados para orientar suas tomadas de decisões (leia o fantástico livro “Data Science para Negócios”, de Foster Provost e Tom Fawcett), na música não poderia ser diferente.

          Como exemplo, cito a famosa banda norte-americana de heavy metal Metallica. Segundo Daniel Ek, CEO da Spotify, em uma teleconferência de sua empresa em 2018, o Metallica utiliza os dados do Spotify para criar uma playlist com as músicas mais executadas pelo público da cidade onde tocarão. Ou seja, se forem tocar na cidade de São Paulo, olharão quais músicas são as mais executadas no Spotify pelos paulistanos – obviamente, há músicas que são praticamente fixas, tal como “Creep” é para Radiohead e “Take on Me” é para A-ha.

          metallica no spotify
          Dados da bada Metallica. Disponível em https://open.spotify.com/

          O serviço de streaming de música, podcast e vídeo sueco, o Spotify, fornece esses dados (analytics, vide imagem abaixo), tal como o Instagram (principalmente a comercial e a de criador de conteúdo) e o YouTube fornecem para seus usuários. Os dados disponibilizados por essa plataforma incluem, por exemplo, o número de execuções de músicas e álbuns no tempo e no espaço (geograficamente).

          metallica no spotify
          Dados do artista UMEK no Spotify. Fonte: Viberate

          Bem, é claro que não só o Metallica utiliza esses dados para agradar seu público (eles não inventaram a roda), assim como esses dados também não apenas são utilizados para esse fim (por exemplo, podem ser utilizados para medir o grau de satisfação das músicas, servindo como métrica para futuros álbuns).

          Pensando no seu dia a dia, você poderia utilizar os dados do seu Instagram para saber quais os melhores horários para publicar uma foto no feed, bem como para saber quais as características do seu público (idade, gênero etc.) e agir com a probabilidade a seu favor. São inúmeros os exemplos do uso de tecnologia e de Data Science para orientar uma tomada de decisão (a criatividade e a fonte de dados que limitarão seu alcance), gerando efeitos mais benéficos do que se usasse apenas a intuição humana.

          Voltando ao serviço de streaming de música, há muito mais conteúdo a ser abordado quando se trata do uso de dados. Em primeiro lugar, você entenderá quais as estratégias utilizadas para as recomendações de músicas; em seguida, a retrospectiva, feita anualmente para cada usuário.

          Recomendações do Spotify

          Administrando 80 milhões de faixas musicais, 4,7 milhões de podcasts, 456 milhões de usuários – sendo 195 assinantes – em 183 mercados (países), a empresa sediada na Suécia oferece o serviço de streaming de música mais popular do mundo. Engana-se quem acredita que ela compete sozinha: ela disputa o enorme mercado da música (streaming) com gigantes, como Apple (Apple Music), Tidal, SoundCloud e Deezer.

          Uma empresa assim tem que ter um diferencial para atrair tanto público. E talvez o seu principal diferencial seja o recurso de recomendação, extremamente sofisticado e eficiente. Houve muito investimento do Spotify em Big Data e Análise de Dados para a melhoria da experiência do usuário, pois a receita principal vem dos assinantes, embora os anunciantes também participem da produção de caixa para empresa.

          “É a maneira mais sábia de aprender mais sobre nosso público e atendê-los melhor. Esses dados, uso e comportamento nos fornecem a riqueza que nos ajuda literalmente a construir produtos e seguir o comportamento para servir de uma forma que ofereça valor e trabalhe a serviço das pessoas, seu tempo, seus comportamentos e seus humores”, explicou Khartoon Weiss, ex-chefe de um setor do Spotify, em uma entrevista em 2019.

          Para que suas recomendações sejam as mais fidedignas possíveis, o Spotify utiliza três técnicas de Machine Learning: Collaborative Filtering, Natural Language Processing (NLP) e Convolutional Neural Network (CNN). A partir dos dados históricos de músicas dos usuários e utilizando essas técnicas de Inteligência Artificial, a empresa consegue entender o gosto de seus usuários e recomendar músicas e playlists.

          A Filtragem Colaborativa consiste em relacionar pessoas com gostos musicais similares e sugerir a essas as músicas que faltam na lista de um e sobram na do outro. Por exemplo, digamos que João goste da música A, assim como Sérgio, Samara e Paulo. Porém, Paulo é aquele que possui mais músicas em comum com João, logo se conclui (raciocínio lógico) que ambos possuam gostos musicais similares. Em função dessa característica deles –afinal, as pessoas não saem cada uma de um planeta, totalmente distintas umas das outras –, uma música que João gosta e que Paulo ainda não ouviu será sugerida a esse, e vice-versa.

          Collaborative Filtering
          Exemplo do Collaborative Filtering. Fonte: Unive

          Na verdade, há dois tipos de Filtragem Colaborativa: Explicit Feedback Approach e Implicit Feedback Approach. A primeira é utilizada, por exemplo, pela Netflix, pois há como fazer avaliações, sugerindo conteúdo em função disso. Já a segunda, por não poder se pautar na avaliação (informação mais explícita, objetiva), tem que encontrar outra forma na qual se basear. Nesse sentido, o algoritmo localiza playlists que contenham as músicas que fazem parte do histórico musical do usuário (músicas/playlists executas, playlists criadas). Encontradas essas listas de músicas, as músicas que o usuário já conhece e escuta são eliminadas para se criar uma nova playlist.            

          Quanto ao Processamento de Linguagem Natural (sigla em inglês NLP), o algoritmo acessa páginas web (blogs, jornais, artigos) para extrair dados de texto sobre músicas e artistas musicais. Com esses dados, as músicas são agrupadas com base nas palavras utilizadas para descrevê-las (por exemplo, rock alternativo, jazz suave, rap melódico). A finalidade disso é identificar os artistas afins e, então, criar listas de reprodução personalizadas.

          Por fim, a Rede Neural Convolucional (sigla em inglês CNN) analisa certos parâmetros das músicas, como BPM, volume e tom, para classificá-las. Ou seja, uma música é classificada por suas próprias características, produzindo um catálogo mais objetivo. Em função dessa objetividade, ela é importante para suavizar o viés humano da NLP, afinal são pessoas que escrevem em blogs, artigos e afins. Munidos dessas classificações, as músicas são recomendadas levando em consideração os gostos musicais dos seus usuários.

          “Sua mixtape semanal cheia de novas descobertas e pérolas musicais escolhidas só para você. Atualize toda segunda.”

          Quem usa o Spotify, deve conhecer o recurso Descobertas da Semana. Bem, uma lista composta por trinta músicas é recomendada aos usuários utilizando as técnicas acima expostas.

          Spotify Wrapped: a sua retrospectiva

          Panetone, árvore de Natal, música do final da Globo e… claro, a retrospectiva do Spotify compartilhada nas redes sociais.

          Desde 2016, a empresa sueca permite que seus usuários tenham acesso aos seus dados musicais, como artistas e músicas mais ouvidos no ano, quantas músicas e quantos minutos ouviu, quantos gêneros musicais ouviu e os mais ouvidos, entre outros dados. Além disso, seus dados são comparados com os dos outros usuários. Por exemplo, é informada a estatística do tempo que você ouve música na plataforma em comparação com os usuários do país em que você reside.

          retrospectiva do spotify
          Alguns dados da retrospectiva de 2022 de um usuário aleatório do Spotify.

          A verdade é que esse serviço é muito bacana: primeiro porque todo mundo gosta de algo personalizado, criado exclusivamente para si; segundo, a experiência traz uma reflexão, pois, enquanto os dados lhe são apresentados, músicas que você ouviu muitas vezes no ano são executadas. Confesso que bate uma sensação de saudade/nostalgia todo ano que minha retrospectiva é compartilhada para mim – a música, assim como o cheiro, são um dos melhores meios para criar e recuperar memórias.

          E se quiser ter acesso aos seus dados musicais, ou você espera que o Spotify crie sua lista (final do ano – entre final de novembro e início de dezembro) ou você utiliza o aplicativo da empresa e clica no link do Spotify Wrapped.

          Para saber mais desse recurso, acesse este link.

          Quanto Ganha um cientista de dados no Spotify

          Que profissional de dados não gostaria de trabalhar em uma gigante e que lida com uma das artes mais consumidas, não é verdade?

          Segundo a página web Glassdoor, a média global do salário de um cientista de dados nessa empresa é de $ 174,318 mil por ano, o qual é composto por um valor base, de $ 129,809 mil por ano, e um adicional.

          Clustering Usando Dados do Spotify

          Para finalizar, quem tiver interesse em mais um conteúdo relativo a essa plataforma, sugiro acessar a aula 17 (“Clustering Usando Dados do Spotify”) da Escola de Data Science, ministrada pelo Rafael Duarte.

          Só para se situar, conforme definição extraída do Medium, “Clustering (ou agrupamento) consiste na implementação de técnicas computacionais para separar um conjunto de dados em diferentes grupos com base em suas semelhanças”.



          Tags: cientista de dadosdata sciencemachine learningmetallicapythonSpotify
          Previous Post

          Projeto Python: um plano à prova de desculpas

          Next Post

          7 livros essenciais para aprender Data Science em 2023

          Carlos Melo

          Carlos Melo

          Piloto da Força Aérea Brasileira por 16 anos, Mestre em Ciências e Tecnologias Aeroespaciais pelo ITA e criador do Sigmoidal.

          Related Posts

          Data Science no exterior - como fazer uma Cover Letter
          Artigos

          Como escrever uma Cover Letter poderosa para Data Science

          by rafael
          janeiro 16, 2023
          GESTÃO DE DADOS: aprenda Data Science ou pague o preço de uma decisão errada | PrimoCast com Thiago Nigro
          Data Science

          Aprenda Data Science ou pague o preço de uma decisão errada

          by Carlos Melo
          janeiro 7, 2023
          Como usar o DALL-E 2 para gerar imagens a partir de textos
          Deep Learning

          Como usar o DALL-E 2 para gerar imagens a partir de textos

          by Carlos Melo
          dezembro 27, 2022
          A nossa mensagem de Feliz Natal para você!
          Artigos

          A nossa mensagem de Feliz Natal para você!

          by Carlos Melo
          janeiro 7, 2023
          Como a França usou Inteligência Artificial para detectar 20 mil piscinas
          Deep Learning

          Como a França usou Inteligência Artificial para detectar 20 mil piscinas

          by Carlos Melo
          janeiro 7, 2023
          Next Post
          7 livros essenciais para aprender Data Science em 2023

          7 livros essenciais para aprender Data Science em 2023

          Comments 1

          1. Avatar Alonso Élbio says:
            2 meses ago

            Ótimo artigo Professor, já começo a perceber esse novo mundo que estou triando, e o seu conteúdo é muito bom..

            Responder

          Deixe um comentário Cancelar resposta

          O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

          Destaques Sigmoidal

          7 Livros de Data Science em 2021

          7 Livros de Data Science em 2021

          agosto 3, 2022
          Aprenda Python e se destaque no mercado

          Aprenda Python e se destaque no mercado

          dezembro 14, 2022
          Redes Neurais Multicamadas com Python e Keras

          Redes Neurais Multicamadas com Python e Keras

          junho 8, 2022

          Navegar por Categoria

          • Artigos
          • Blog
          • Carreira
          • Colunistas
          • Cursos
          • Data Science
          • Deep Learning
          • Destaques
          • Entrevistas
          • Inglês
          • Iniciantes
          • Inteligência Artificial
          • Livros
          • Machine Learning
          • NFT
          • Notícias
          • Projetos
          • Python
          • Teoria
          • Tutoriais
          • Visão Computacional
          • Youtube

          Navegar por Tags

          ações cancer carreira ciencia de dados cientista de dados cnn Cursos dados desbalanceados data science data science na prática decision tree deep learning gis gpt-3 gráficos healthcare iniciantes jupyter kaggle keras machine learning matplotlib medicina mnist nft nlp pandas personal branding plotly portfólio profissão python random forest redes neurais redes neurais convolucionais regressão logística seaborn sklearn tensorflow titanic vagas visualização de dados vídeo youtube árvore de decisão
          Sigmoidal

          O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

          Seguir no Instagram

          Categorias

          • Artigos
          • Blog
          • Carreira
          • Colunistas
          • Cursos
          • Data Science
          • Deep Learning
          • Destaques
          • Entrevistas
          • Inglês
          • Iniciantes
          • Inteligência Artificial
          • Livros
          • Machine Learning
          • NFT
          • Notícias
          • Projetos
          • Python
          • Teoria
          • Tutoriais
          • Visão Computacional
          • Youtube

          Navegar por Tags

          ações cancer carreira ciencia de dados cientista de dados cnn Cursos dados desbalanceados data science data science na prática decision tree deep learning gis gpt-3 gráficos healthcare iniciantes jupyter kaggle keras machine learning matplotlib medicina mnist nft nlp pandas personal branding plotly portfólio profissão python random forest redes neurais redes neurais convolucionais regressão logística seaborn sklearn tensorflow titanic vagas visualização de dados vídeo youtube árvore de decisão

          Artigos Recentes

          • Como escrever uma Cover Letter poderosa para Data Science
          • Aprenda Data Science ou pague o preço de uma decisão errada
          • Como usar o DALL-E 2 para gerar imagens a partir de textos

          © 2023 Sigmoidal - Aprenda Data Science e Python na prática.

          No Result
          View All Result
          • Home
          • Artigos
          • Tutoriais
          • YouTube
          • Contato

          © 2023 Sigmoidal - Aprenda Data Science e Python na prática.

          Welcome Back!

          Login to your account below

          Forgotten Password?

          Retrieve your password

          Please enter your username or email address to reset your password.

          Log In

          Add New Playlist

          INSCRIÇÕES ABERTAS

          DATA SCIENCE

          NA PRÁTICA

          RESERVE SUA VAGA
          Are you sure want to unlock this post?
          Unlock left : 0
          Are you sure want to cancel subscription?