fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Redes Neurais Multicamadas com Python e Keras

Carlos Melo por Carlos Melo
junho 6, 2019
em Deep Learning, Machine Learning, Python, Tutoriais
5
268
COMPARTILHAMENTOS
8.9k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Neste tutorial, você vai aprender como implementar Redes Neurais Multicamadas utilizando Python e a biblioteca de Deep Learning Keras, uma das mais populares atualmente.

Keras é uma biblioteca de Redes Neurais, capaz de rodar com o TensorFlow (não apenas), e que foi desenvolvida pensando em possibilitar uma fácil e rápida prototipação.

Redes Neurais Multicamadas são aqueles nas quais os neurônios estão estruturados em duas ou mais camadas (layers) de processamento (já que no mínimo haverá 1 layer de entrada e 1 layer de saída).

Implementar uma arquitetura completa de Redes Neurais  from scratch é uma tarefa hercúlea, que exige um entendimento mais sólido de Programação, Álgebra Linear e Estatística – isso sem falar ainda que o desempenho computacional da sua própria implementação dificilmente baterá o desempenho de bibliotecas famosas na comunidade.

Para mostrar que com poucas linhas de código é possível implementar um Rede simples, vamos pegar o super-conhecido problema de classificação MNIST e ver o desempenho do nosso algoritmo quando submetido a esse dataset com 70.000 imagens!

Caso você queira, todo o código estará disponível no meu Github!

Arquitetura das Redes Neurais

As Redes Neurais são modeladas como um conjunto de neurônios conectados como um grafo acíclico. O que isso significa na prática? Isso significa que as saídas (outputs) de alguns neurônios serão as entradas (inputs) de outros neurônios.

As Redes Neurais mais comumente encontradas por aí são aquelas organizadas em camadas (layers) distintas, e cada camada contendo um conjunto de neurônios. Já o tipo de layer mais comumente encontrado é aquele do tipo fully-connected layer (camada totalmente conectada). Nesse, os neurônios entre dois layers adjacentes se conectam dois a dois.

Esse tipo de arquitetura também é conhecida como Rede Neural Feedforward,pois apenas é permitido a um neurônio do layer li se conectar a um neurônio do layer li+1 , como ilustrado na figura abaixo.

O objetivo deste post é realizar na prática uma implementação por meio da biblioteca Keras. Para um introdução mais completa e detalhada sobre o assunto, assim como os conceitos básicos sobre deep learning, recomendo a leitura deste artigo, no qual indico 3 ótimos cursos online.

O que é MNIST

MNIST é um conjunto de dados que contém milhares de imagens manuscritas dos dígitos de 0-9. O desafio nesse dataset é, dada uma imagem qualquer, aplicar o label correspondente (classificar corretamente a imagem). O MNIST é tão estudado e utilizado pela comunidade, que atua como benchmark para comparar diferentes algoritmos de reconhecimento de imagens.

MnistExamples

O dataset completo é composto 70.000 imagens, cada uma de tamanho 28 X 28 pixels. A figura acima mostra alguns exemplares aleatórios do conjunto de dados, para cada um dos dígitos possíveis. Ressalta-se que as imagens já estão normalizadas e centralizadas.

Uma vez que as imagens estão em tons de cinza, ou seja, possuem apenas um canal, o valor relativo a cada pixel das imagens deve variar dentro do intervalo [0, 255].

Redes Neurais Multicamadas são aqueles nas quais os neurônios estão estruturados em duas ou mais camadas (layers) de processamento.

IAN GOODFELLOW

MNIST no Python

De tão utilizado, o conjunto de dados MNIST já está disponível dentro da biblioteca scikit-learn, e pode ser importado diretamente pelo Python com fetch_mldata("MNIST Original").

Para exemplificar como importar o MNIST completo e extrair algumas informações básicas, vamos rodar o código abaixo:

# importar as bibliotecas necessárias
from sklearn.datasets import fetch_mldata
import matplotlib.pyplot as plt
import numpy as np

# importar o conjunto de dados MNIST
dataset = fetch_mldata("MNIST Original")
(data, labels) = (dataset.data, dataset.target)

# Exibir algumas informações do dataset MNIST
print("[INFO] Número de imagens: {}".format(data.shape[0]))
print("[INFO] Pixels por imagem: {}".format(data.shape[1]))

# escolher um índice aleatório do dataset e exibir
# a imagem e label correspondente
np.random.seed(17)
randomIndex = np.random.randint(0, data.shape[0])
print("[INFO] Imagem aleatória do MNIST com label '{:.0f}':".format(labels[randomIndex]))

plt.imshow(data[randomIndex].reshape((28,28)), cmap="Greys")
plt.show()

Acima, podemos ver que de fato o array contendo as imagens possui 70.000 linhas (uma linha para cada imagem) e 784 colunas (todos os pixels da imagem 28 X 28). Também podemos ver uma das imagens escolhidas aleatoriamente. No caso desse dígito, nosso algoritmo teria tido sucesso se conseguisse classificar corretamente o dígito como ‘4’.

Implementando nossa Rede Neural com Python + Keras

Feita uma breve introdução sobre Redes Neurais, vamos implementar uma Rede Neural Feedforward para o problema de classificação MNIST.

Crie um novo arquivo em sua IDE preferida, com o nome rede_neural_keras.py, e siga os passos do código abaixo.

# importar os pacotes necessários
from sklearn.datasets import fetch_mldata
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelBinarizer
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import SGD
import numpy as np
import matplotlib.pyplot as plt

Acima, importamos todos pacotes necessários para criar uma Rede Neural simples, com a biblioteca Keras. Caso você tenha tido um erro ao tentar importar os pacotes, ou não tenha um ambiente virtual em Python dedicado para trabalhar com Deep Learning/Computer Vision, recomendo procurar um tutorial baseado no seu Sistema Operacional.

# importar o MNIST
print("[INFO] importando MNIST...")
dataset = fetch_mldata("MNIST Original")

# normalizar todos pixels, de forma que os valores estejam
# no intervalor [0, 1.0]
data = dataset.data.astype("float") / 255.0
labels = dataset.target

Após importar o conjunto de imagens, vou dividir entre conjunto de treino (75%) e conjunto de teste (25%), prática já bem conhecida no universo do Data Science. Mas atenção! O conjunto de treino e de teste  DEVEM SER INDEPENDENTES, para evitar diversos problemas, entre eles o de overfitting.

Apesar de parecer complicado, isso pode ser feito com apenas uma linha de código, pois graças à biblioteca scikit-learn, isso pode ser feito facilmente com o método train_test_split.

Nesta etapa de preparação dos nossos dados, será preciso também converter os labels – que são representados por números inteiros – para o formato de vetor binário. Para exemplificar o que é um vetor binário, veja o exemplo abaixo, que indica o label ‘4’.

4 = [0,0,0,0,1,0,0,0,0,0]

Nesse vetor, o valor 1 é atribuído ao índice correspondente ao label e o valor 0 aos outros. Essa operação , conhecida como one-hot encoding também pode ser feita facilmente com a classe LabelBinarizer.

# dividir o dataset entre train (75%) e test (25%)
(trainX, testX, trainY, testY) = train_test_split(data, dataset.target)

# converter labels de inteiros para vetores
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)

Pronto! Com o dataset importado e processado da maneira correta, a gente pode finalmente definir a arquitetura da nossa Rede Neural com o Keras.

De maneira totalmente arbitrária, defini que a Rede Neural terá 4 layers:

  • O nosso primeiro layer (l0) receberá como input os valores relativos a cada pixel das imagens. Ou seja, como cada imagem possui tamanho igual a 28 X 28 pixels, l0 terá 784 neurônios.
  • Os hidden layers l1 e l2 terão arbitrariamente 128 e 64 neurônios.  
  • Por fim,  a última camada, l3, terá a quantidade de neurônios correspondente à quantidade de classes que o nosso problema de classificação possui: 10 (lembrando, são 10 dígitos possíveis).
# definir a arquitetura da Rede Neural usando Keras
# 784 (input) => 128 (hidden) => 64 (hidden) => 10 (output)
model = Sequential()
model.add(Dense(128, input_shape=(784,), activation="sigmoid"))
model.add(Dense(64, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Dentro do conceito de arquitetura feedforward, a nossa Rede Neural é instanciada pela classe Sequential, o que quer dizer que cada camada será “empilhada” sobre outra, com o output de uma sendo o input da próxima. No nosso exemplo, todos layers são do tipo fully-connected layer.

Os hidden layers serão ativados pela função sigmoid, que recebe os valores reais dos neurônios como input e os joga dentro do range [0, 1]. Já para a última camada, como essa tem que refletir as probabilidades para cada uma das classes possíveis, será utilizada a função softmax.

Para treinar nosso modelo, vou usar o algoritmo mais importante para as Redes Neurais: Stochastic Gradient Descent (SGD). Quero fazer um post dedicado sobre o SGD no futuro (matemática + código), tamanha sua importância! Mas por enquanto, vamos usar o algoritmo já pronto de nossas bibliotecas.

A learning rate do SGD será igual a 0.01, e a loss function será acategorical_crossentropy, uma vez que o número de classes do output é maior que dois.

# treinar o modelo usando SGD (Stochastic Gradient Descent)
print("[INFO] treinando a rede neural...")
model.compile(optimizer=SGD(0.01), loss="categorical_crossentropy",
             metrics=["accuracy"])

H = model.fit(trainX, trainY, batch_size=128, epochs=10, verbose=2,
         validation_data=(testX, testY))

A força da Deep Learning vem basicamente de um único algoritmo muito importante: Stochastic Gradient Descent (SGD)

Chamando a model.fit, tem início então o treinamento da rede neural. Após um tempo que varia de acordo com sua máquina,  os pesos de cada nó são otimizados, e a rede pode ser considerada como treinada.

Para avaliar o desempenho do algoritmo, chamamos o método model.predict para gerar previsões em cima do dataset de teste. O desafio do modelo é fazer a previsão para as 17.500 imagens que compõe o conjunto de teste, atribuindo um label de 0-9 para cada uma delas:

# avaliar a Rede Neural
print("[INFO] avaliando a rede neural...")

predictions = model.predict(testX, batch_size=128)

print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1)))

Por fim, após o relatório de desempenho obtido, vamos querer plotar a accuracy e loss ao longo das iterações. Analisar visualmente permite que identifiquemos facilmente situações de overfitting, por exemplo:

# plotar loss e accuracy para os datasets 'train' e 'test'
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0,100), H.history["loss"], label="train_loss")
plt.plot(np.arange(0,100), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0,100), H.history["acc"], label="train_acc")
plt.plot(np.arange(0,100), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.show()

Executando a Rede Neural

Com o código pronto, é só executar o comando abaixo para ver nossa Rede Neural construída em cima da biblioteca Keras em pleno funcionamento:

carlos$ python neural_network_keras.py

Como resultado, o classification_report mostra que ao final das 100 epochs, a rede conseguiu atingir uma acurácia de 92%, o que é um bom resultado para este tipo de arquitetura. Apenas como curiosidade, as Redes Neurais Convolucionais têm o potencial de atingir até 99% de acurácia (!):

Obviamente há muitas melhorias que podem ser feitas para melhorar o desempenho da nossa rede, mas já dá para ver que mesmo uma arquitetura simples apresenta um ótimo desempenho.

Olhando o gráfico abaixo, note como as curvas referentes aos datasets de treino e validação praticamente estão sobrepostas. Isso é um ótimo indicativo de que não houve problemas de overfitting durante a fase de treinamento.

Resumo

Bem, chegando ao final do post, foram apresentados os conceitos básicos sobre Redes Neurais, assim como o conjunto de dados MNIST, muito utilizado para fazer benchmark entre algoritmos.

Ao testar o desempenho de uma rede neural com 4 layers (input+2 hidden layers + output), conseguimos obter 92% de precisão nas previsões realizadas.

A implementação foi feita em cima do Keras, para mostrar que com usando poucas linhas de código é possível construir ótimos modelos de classificação.

Por fim, gostaria de dizer que pretendo produzir artigos não com foco apenas na escrita de código/implementação pura, mas também entrar mais a fundo nos conceitos teóricos e matemáticos por trás de algoritmos e métodos de Machine Learning.

Acredito fortemente que a gente só evolui quando bota a mão na massa e vai a fundo atrás de algo mais. É isso que estou fazendo para mim, e espero poder compartilhar esses aprendizados aqui no blog.

Compartilhar19Compartilhar107Enviar
Próximo Post

Aprender Deep Learning: os 3 melhores cursos em Python

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

Por que o ChatGPT mente para você?
Artigos

Por que o ChatGPT mente para você?

por Carlos Melo
setembro 16, 2025
Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Visão Computacional

Processamento de Nuvens de Pontos com Open3D e Python

por Carlos Melo
janeiro 2, 2025
Próximo Post
Aprender Deep Learning: os 3 melhores cursos em Python

Aprender Deep Learning: os 3 melhores cursos em Python

Comentários 5

  1. elton fernando says:
    6 anos atrás

    Muito bom, parabéns. Gosto pastante dessa metodologia do python de ferramentas intuitivas, Porém quando se fala em redes neural tem muito conteúdo, mais eles sempre param aqui. Seria de estema importância um artigo que desmistifica-se isso, como importar uma rede e usar em uma aplicação na pratica. Acampanho seu trabalho, tem me agudado muito, Obrigado.

    Responder
    • Carlos Melo Carlos Melo says:
      2 anos atrás

      Muito obrigado pelo comentário! Normalmente abordo esses assuntos mais aprofundados em aulas públicas no YouTube (em lives) ou dentro da Escola de Data Science (https://escola.sigmoidal.ai). Um forte abraço!

      Responder
  2. Joab Santana says:
    6 anos atrás

    Excelente artigo, professor!
    Muito obrigado!

    Responder
    • Carlos Melo Carlos Melo says:
      2 anos atrás

      Muito obrigado pelo comentário!

      Responder
  3. Evair says:
    5 anos atrás

    Ótimo conteúdo. Queria informar que com a atualização da biblioteca scikit-learn o import fetch_mldata se tornou import fetch_openml, com isso a linha com o comando dataset = fetch_mldata(“MNIST Original”), agora é dataset = fetch_openml(“mnist_784”) e por fim as chaves de H.history.keys() são accuracy e val_accuracy.

    Responder

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    512 compartilhamentos
    Compartilhar 205 Tweet 128
  • Por que o ChatGPT mente para você?

    9 compartilhamentos
    Compartilhar 4 Tweet 2
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    425 compartilhamentos
    Compartilhar 170 Tweet 106
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    398 compartilhamentos
    Compartilhar 159 Tweet 100
  • Processamento de Nuvens de Pontos com Open3D e Python

    56 compartilhamentos
    Compartilhar 22 Tweet 14
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
Por que o ChatGPT mente para você?

Por que o ChatGPT mente para você?

setembro 16, 2025
Green Card aprovado por habilidades extraordinárias em Data Science

Green Card aprovado por habilidades extraordinárias em Data Science

julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025

Seguir

  • 🚀 PROJETO COMPLETO DE DATA SCIENCE (AO VIVO)!

Neste domingo, às 21h, você vai aprender como construir um modelo de precificação de imóveis do zero, usando dados reais e técnicas de Data Science aplicadas ao mercado imobiliário.

Vamos passar pela análise exploratória de dados, entender padrões de preços, criar e validar um modelo de machine learning e discutir como melhorar a acurácia e interpretar os resultados.

💻📊 Uma aula prática e direta para quem quer dominar modelagem preditiva e transformar dados em decisões reais no mercado de imóveis.

>>> LINK NA BIO!

#datascience #cientistadedados #machinelearning
  • 🚀 PYTHON + DATA SCIENCE = Vigilância Aérea em Tempo Real

Treinei uma arquitetura baseada na YOLO (para detecção de objetos) e criei um servidor RTMP com NGINX para conseguir transmitir imagens do DJI Mavic Air 2 e processá-las ao vivo.

Esse projeto é um exemplo de como é possível aprender Data Science na prática!

#datascience #machinelearning #python
  • Até quando você vai continuar estagnado e sem clareza sobre a direção da sua carreira?

A verdade é simples: aprender a programar é a habilidade número um para qualquer profissional hoje, independente da área ou idade.

💻 Saber programar não é exclusividade de quem trabalha em tecnologia.

A pergunta é: você vai continuar no lado de quem espera por soluções prontas e fica preso a tarefas manuais, ou vai migrar para o lado de quem entende a tecnologia e usa programação para crescer, inovar e ganhar vantagem competitiva?

Comece agora. Aprender Python é o primeiro passo para abrir portas que você nem sabia que existiam.

#python #datascience #machinelearning
  • 💰 Você sabe o que faz e quanto ganha um cientista de dados?

Ser Cientista de Dados significa trabalhar com inteligência artificial, estatística e programação para transformar dados em decisões que movimentam negócios e impactam bilhões de pessoas.

É a função que dá vida a recomendações personalizadas, modelos preditivos e sistemas inteligentes que mudam a forma como empresas inovam.

E não é apenas fascinante...

💼💰 É também uma das carreiras mais bem remuneradas da área de tecnologia!

Se você quer uma carreira com futuro, relevância e excelente retorno financeiro, Data Science é o caminho certo!

#cientistadedados #datascience #python
  • Você colocaria fraldas do lado das cervejas no seu supermercado? 🤔

Parece estranho, mas foi exatamente essa descoberta que mudou as vendas do Walmart.

Os cientistas de dados da empresa analisaram milhões de transações com uma técnica de Data Mining que identifica padrões de compra e combinações inesperadas de produtos.

Então, usando algoritmos da Data Science, cruzaram dados de horário, perfil de cliente e itens comprados juntos.

Encontraram algo curioso: homens que passavam no mercado após as 18h para comprar fraldas, muitas vezes no caminho de casa, também compravam cerveja 🍺.

O Walmart testou a hipótese: colocou fraldas perto da seção de cervejas.

O resultado? As vendas de cerveja dispararam. 🚀

Esse é um exemplo clássico de como Data Science gera impacto direto no negócio.

Não é sobre algoritmos complexos apenas; é sobre transformar dados históricos em decisões inteligentes e lucrativas.

#datascience #cientistadedados #machinelearning
  • Conheça as formações da Academia Sigmoidal.

Nossos programas unem rigor acadêmico, prática aplicada e dupla certificação internacional, preparando você para atuar em Data Science, Visão Computacional e Inteligência Artificial com impacto real no mercado.

🤖 Pós-Graduação em Data Science: Forma Cientistas de Dados e Engenheiros de Machine Learning do zero, com Python, estatística e projetos práticos do mundo real.

👁️ Pós-Graduação em Visão Computacional: Especialize-se em processamento de imagens, Deep Learning, redes neurais e navegação autônoma de drones, tornando-se Engenheiro de Visão Computacional ou Engenheiro de Machine Learning.

📊 MBA em Inteligência Artificial: Voltado a profissionais de qualquer área, ensina a aplicar IA estrategicamente em negócios, usando automação, agentes de IA e IA generativa para inovação e competitividade.

Além do título de Especialista reconhecido pelo MEC, você ainda conquista uma Dupla Certificação Internacional com o STAR Research Institute (EUA).

💬 Interessado em dar o próximo passo para liderar no mercado de tecnologia? Me envie uma mensagem e eu te ajudo pessoalmente com a matrícula.

#DataScience #InteligenciaArtificial #VisaoComputacional
  • Treinar um modelo significa encontrar um bom conjunto de parâmetros. Esse conjunto é definido pela função objetivo, também chamada de função de perda. 👀

O gradient descent é o algoritmo que ajusta esses parâmetros passo a passo. Ele calcula a direção de maior inclinação da função de perda e move o modelo para baixo nessa curva. ⬇️

Se o parâmetro é o peso que multiplica X ou o bias que desloca a reta, ambos são atualizados. Cada iteração reduz o erro, aproximando o modelo da solução ótima.

A intuição é simples: sempre que a função de perda é maior, o gradiente aponta o caminho. O algoritmo segue esse caminho até que não haja mais descida possível. 🔄 

#inteligênciaartificial #datascience #machinelearning
  • Qual a melhor linguagem? PYTHON ou R?

Diretamente do túnel do tempo! Resgatei esse vídeo polêmico de 2021, quem lembra??

#DataScience #Python #R #Programação
  • 🎥 Como começar uma CARREIRA como CIENTISTA DE DADOS

Você já pensou em entrar na área que mais cresce e que paga os melhores salários no mundo da tecnologia?

Domingo você vai descobrir o que realmente faz um Cientista de Dados, quais são as habilidades essenciais e o passo a passo para dar os primeiros passos na carreira.

Eu vou te mostrar um mapa para você sair do zero e se preparar para trabalhar com Data Science em 2026.

📅 Domingo, 28 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

Clique no link dos Stories e receba o link da aula ao vivo!

#datascience #machinelearning #cientistadedados
  • VISÃO COMPUTACIONAL está no centro de um dos avanços mais impressionantes da exploração espacial recente: o pouso autônomo da missão Chang’e-5 na Lua. 🚀🌑

Durante a descida, câmeras de alta resolução e sensores a laser capturavam continuamente o relevo lunar, enquanto algoritmos embarcados processavam as imagens em tempo real para identificar crateras e obstáculos que poderiam comprometer a missão.

Esses algoritmos aplicavam técnicas de detecção de bordas e segmentação, aproximando crateras por elipses e cruzando a análise visual com dados de altímetros. Assim, a IA conseguia selecionar regiões planas e seguras para o pouso, ajustando a trajetória da nave de forma autônoma. 

Esse processo foi indispensável, já que a distância entre Terra e Lua gera atraso de comunicação que inviabiliza controle humano direto em tempo real.

Esse caso ilustra como IA embarcada está deixando de ser apenas uma ferramenta de análise pós-missão para se tornar parte crítica das operações espaciais autônomas em tempo real — um passo essencial para missões em Marte, asteroides e no lado oculto da Lua.

(PS: Vi o Sérgio Sacani, do @spacetoday , postando isso primeiro.)

#visaocomputacional #machinelearning #datascience
  • 🔴Aprenda a MATEMÁTICA por Trás do MACHINE LEARNING

Você já se perguntou como as máquinas aprendem?🤖 

A resposta está na matemática que dá vida ao Machine Learning. E neste vídeo, você vai aprender os conceitos fundamentais que sustentam os algoritmos de inteligência artificial, de forma clara e acessível.

Mais do que apenas fórmulas, a ideia é mostrar como cada peça matemática se conecta para transformar dados em aprendizado. Se você deseja compreender a lógica por trás do funcionamento das máquinas, essa aula é um ótimo ponto de partida.

📅 Domingo, 21 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

#machinelearning #datascience #cientistadedados
  • 🚀 As matrículas estão abertas!
Depois de quase 1 ano, a nova turma da Pós-Graduação em Data Science chegou.

NOVIDADE: agora com Dupla Certificação Internacional:
🇧🇷 Diploma de Especialista reconhecido pelo MEC
🇺🇸 Certificado do STAR Research Institute (EUA)

Aprenda Data Science na prática, domine Machine Learning e IA, e conquiste reconhecimento no Brasil e no mundo.

2025 pode ser o ano em que você dá o passo decisivo para se tornar Cientista de Dados.

🔗 Clique no link da bio e reserve sua vaga!
#datascience #cienciadedados #python
  • Por que o CHATGPT MENTE PARA VOCÊ? 🤔

Já percebeu que o ChatGPT às vezes responde com confiança... mas está errado? 

Isso acontece porque, assim como um aluno em prova, ele prefere chutar do que deixar em branco.
Essas respostas convincentes, mas erradas, são chamadas de alucinações.

E o que o pesquisadores da OpenAI sugerem, é que esse tipo de comportamento aparece porque os testes que treinam e avaliam o modelo premiam o chute e punem a incerteza.

Então, da próxima vez que ele ‘inventar’ algo, lembre-se: não é pessoal, ele apenas for treinado dessa maneira!
#inteligênciaartificial #chatgpt #datascience
  • ChatGPT: um "estagiário de LUXO" para aumentar sua produtividade na programação.

 #programacao #copiloto #produtividade #streamlit #dashboard #tecnologia #devlife
  • Da série “Foi a IA que me deu”, vamos relembrar minha viagem pra Tromsø, na Noruega, 500 km acima da linha do Círculo Polar Ártico. 🌍❄️

No vídeo de hoje, você vai aprender o que é um "fiorde"! 

Como você dormia sem saber o que era um fiorde?? 😅
  • Qual LINGUAGEM DE PROGRAMAÇÃO é usada na TESLA?

A Tesla utiliza diferentes linguagens de programação em cada fase do ciclo de desenvolvimento. 

O treinamento das redes neurais convolucionais (CNN) é feito em Python, aproveitando bibliotecas científicas e a rapidez de prototipagem. Isso permite testar arquiteturas de CNN com agilidade no ambiente de pesquisa.

Já a implementação embarcada ocorre em C++, garantindo alta performance. Como os modelos de CNN precisam responder em tempo real, o C++ assegura baixa latência para tarefas como detectar pedestres e interpretar placas de trânsito.

Com isso, a Tesla combina Python para pesquisa e C++ para produção, equilibrando inovação e velocidade em sistemas críticos de visão computacional.

#python #machinelearning #inteligenciaartificial
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.