fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

SQL vs. NoSQL para Análise e Ciência de Dados

Rafael Duarte por Rafael Duarte
dezembro 1, 2023
em Data Science
0
6
COMPARTILHAMENTOS
192
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

Se você já se aventurou no vasto mundo da análise e ciência de dados, provavelmente já esbarrou na escolha entre bancos de dados SQL e NoSQL.

Esses sistemas de gerenciamento de dados desempenham papéis cruciais na coleta, armazenamento e recuperação de informações, mas suas abordagens são como noite e dia.

Vamos desvendar os mistérios por trás do SQL e NoSQL, explorando suas nuances, diferenças de uso e exemplos de sintaxe, tudo sob a perspectiva da análise e ciência de dados.

 

O Que São SQL e NoSQL?

 

SQL (Structured Query Language) e NoSQL (Not Only SQL) são categorias distintas de bancos de dados.

SQL, muitas vezes chamado de banco de dados relacional, é baseado em um modelo tabular, onde os dados são organizados em tabelas com linhas e colunas.

NoSQL, por outro lado, é uma abordagem mais flexível, adequada para dados não estruturados ou semiestruturados, como documentos, gráficos ou pares de chave-valor.

 

Como Funcionam e Suas Diferenças de Uso:

 

O SQL é notável por sua estrutura rígida e esquemas predefinidos. Cada tabela tem uma estrutura específica e as relações entre elas são definidas de antemão. Isso é ideal para conjuntos de dados que exigem consistência e integridade, como sistemas transacionais.

 

Por outro lado, o NoSQL oferece flexibilidade, permitindo que os dados sejam armazenados sem uma estrutura fixa. Isso é particularmente útil em cenários onde os requisitos e a estrutura dos dados podem mudar com o tempo, como em projetos de ciência de dados.

 

Exemplos de Sintaxe em SQL e NoSQL:

 

Vamos considerar um exemplo prático de sintaxe em ambas as abordagens para recuperar dados de uma base de dados fictícia contendo informações de vendas.

SQL:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
SELECT produto, SUM(quantidade) AS total_vendido
FROM vendas
WHERE data BETWEEN '2022-01-01' AND '2022-12-31'
GROUP BY produto
ORDER BY total_vendido DESC;
SELECT produto, SUM(quantidade) AS total_vendido FROM vendas WHERE data BETWEEN '2022-01-01' AND '2022-12-31' GROUP BY produto ORDER BY total_vendido DESC;
SELECT produto, SUM(quantidade) AS total_vendido

FROM vendas

WHERE data BETWEEN '2022-01-01' AND '2022-12-31'

GROUP BY produto

ORDER BY total_vendido DESC;

Neste exemplo SQL, estamos selecionando o produto e a quantidade total vendida durante um intervalo de datas específico, agrupando por produto e ordenando pelo total vendido em ordem decrescente.

 

NoSQL (MongoDB – usando a sintaxe do MongoDB Query Language):

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
db.vendas.aggregate([
{ $match: { data: { $gte: ISODate('2022-01-01'), $lte: ISODate('2022-12-31') } } },
{ $group: { _id: '$produto', total_vendido: { $sum: '$quantidade' } } },
{ $sort: { total_vendido: -1 } }
]);
db.vendas.aggregate([ { $match: { data: { $gte: ISODate('2022-01-01'), $lte: ISODate('2022-12-31') } } }, { $group: { _id: '$produto', total_vendido: { $sum: '$quantidade' } } }, { $sort: { total_vendido: -1 } } ]);
db.vendas.aggregate([

  { $match: { data: { $gte: ISODate('2022-01-01'), $lte: ISODate('2022-12-31') } } },

  { $group: { _id: '$produto', total_vendido: { $sum: '$quantidade' } } },

  { $sort: { total_vendido: -1 } }

]);

No NoSQL, utilizando MongoDB como exemplo, a consulta usa a pipeline de agregação para atingir o mesmo resultado. Aqui, estamos filtrando por data, agrupando por produto e somando as quantidades vendidas, antes de ordenar os resultados.

 

Qual o Melhor Para Você?

A escolha entre SQL e NoSQL depende das demandas específicas do seu projeto. Se a estrutura dos seus dados é rígida e as relações são bem definidas, o SQL pode ser a melhor escolha.

Por outro lado, se a flexibilidade e a capacidade de lidar com dados não estruturados são essenciais, o NoSQL pode ser a resposta.

Ambas as abordagens têm seu lugar no mundo da análise e ciência de dados, e a escolha certa dependerá da natureza dos seus dados e dos objetivos do seu projeto.

Experimente, explore e descubra qual se alinha melhor com as demandas únicas do seu trabalho analítico.

 

CompartilharCompartilhar2Enviar
Post Anterior

Métricas de Avaliação em Modelos de Classificação em Machine Learning

Próximo Post

Entendendo Distribuições Estatísticas

Rafael Duarte

Rafael Duarte

Relacionado Artigos

Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Carlos Melo e Sérgio Sacani – Ciência Sem Fim
Youtube

Carlos Melo e Sérgio Sacani – Ciência Sem Fim

por Carlos Melo
janeiro 16, 2025
Carlos Melo da Pós Graduação em Data Science do Sigmoidal
Aeroespacial

Oportunidades no Setor Espacial para Cientistas de Dados

por Carlos Melo
janeiro 15, 2025
Minha Participação no Hipsters Ponto Tech: TensorFlow
Deep Learning

Minha Participação no Hipsters Ponto Tech: TensorFlow

por Carlos Melo
abril 10, 2024
Próximo Post
Entendendo Distribuições Estatísticas

Entendendo Distribuições Estatísticas

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    482 compartilhamentos
    Compartilhar 193 Tweet 121
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    405 compartilhamentos
    Compartilhar 162 Tweet 101
  • Processamento de Nuvens de Pontos com Open3D e Python

    43 compartilhamentos
    Compartilhar 17 Tweet 11
  • O Que é Amostragem e Quantização no Processamento de Imagens

    5 compartilhamentos
    Compartilhar 2 Tweet 1
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    381 compartilhamentos
    Compartilhar 152 Tweet 95
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025
DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA

DeepSeek R1 vs OpenAI o1 – Qual é o Melhor Modelo de IA?

janeiro 25, 2025
Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

Trump Anuncia Investimento de US$ 500 Bilhões em Infraestrutura de IA

janeiro 22, 2025

Seguir

  • Como aprender QUALQUER coisa rapidamente?

💡 Comece com projetos reais desde o primeiro dia.
📁 Crie um portfólio enquanto aprende. 
📢 E compartilhe! Poste, escreva, ensine. Mostre o que está fazendo. Documente a jornada, não o resultado.

Dois livros que mudaram meu jogo:
-> Ultra Aprendizado (Scott Young)
-> Uma Vida Intelectual (Sertillanges)

Aprenda em público. Evolua fazendo.

#ultralearning #estudos #carreira
  • Como eu usava VISÃO COMPUTACIONAL no Centro de Operações Espaciais, planejando missões de satélites em situações de desastres naturais.

A visão computacional é uma fronteira fascinante da tecnologia que transforma a forma como entendemos e respondemos a desastres e situações críticas. 

Neste vídeo, eu compartilho um pouco da minha experiência como Engenheiro de Missão de Satélite e especialista em Visão Computacional. 

#VisãoComputacional #DataScience #MachineLearning #Python
  • 🤔 Essa é a MELHOR linguagem de programação, afinal?

Coloque sua opinião nos comentários!

#python #datascience #machinelearning
  • 💘 A história de como conquistei minha esposa... com Python!

Lá em 2011, mandei a real:

“Eu programo em Python.”
O resto é história.
  • Para rotacionar uma matriz 2D em 90°, primeiro inverto a ordem das linhas (reverse). Depois, faço a transposição in-place. Isso troca matrix[i][j] com matrix[j][i], sem criar outra matriz. A complexidade segue sendo O(n²), mas o uso de memória se mantém O(1).

Esse padrão aparece com frequência em entrevistas. Entender bem reverse + transpose te prepara para várias variações em matrizes.

#machinelearning #visaocomputacional #leetcode
  • Na última aula de estrutura de dados, rodei um simulador de labirintos para ensinar como resolver problemas em grids e matrizes.

Mostrei na prática a diferença entre DFS e BFS. Enquanto a DFS usa stacks, a BFS utiliza a estrutura de fila (queue). Cada abordagem tem seu padrão de propagação e uso ideal.

#machinelearning #visaocomputacional #algoritmos
  • 🔴 Live #2 – Matrizes e Grids: Fundamentos e Algoritmos Essenciais

Na segunda aula da série de lives sobre Estruturas de Dados e Algoritmos, o foco será em Matrizes e Grids, estruturas fundamentais em problemas de caminho, busca e representação de dados espaciais.

📌 O que você vai ver:

Fundamentos de matrizes e grids em programação
Algoritmos de busca: DFS e BFS aplicados a grids
Resolução ao vivo de problemas do LeetCode

📅 Terça-feira, 01/07, às 22h no YouTube 
🎥 (link nos Stories)

#algoritmos #estruturasdedados #leetcode #datascience #machinelearning
  • 💡 Quer passar em entrevistas técnicas?
Veja essa estratégia para você estudar estruturas de dados em uma sequência lógica e intuitiva.
⠀
👨‍🏫 NEETCODE.io
⠀
🚀 Marque alguém que também está se preparando!

#EntrevistaTecnica #LeetCode #MachineLearning #Data Science
  • Live #1 – Arrays & Strings: Teoria e Prática para Entrevistas Técnicas

Segunda-feira eu irei começar uma série de lives sobre Estruturas de Dados e Algoritmos. 

No primeiro encontro, falarei sobre um dos tipos de problemas mais cobrados em entrevistas: Arrays e Strings.

Nesta aula, você vai entender a teoria por trás dessas estruturas, aprender os principais padrões de resolução de problemas e aplicar esse conhecimento em exercícios selecionados do LeetCode.

📅 Segunda-feira, 23/06, às 21h no YouTube

🎥 (link nos Stories)

#machinelearning #datascience #cienciadedados #visãocomputacional
  • 🤖 Robôs que escalam, nadam, voam e rastejam.

Acabei de ver o que a Gecko Robotics está fazendo — e é impressionante.
Eles usam robôs que escalam, rastejam, nadam e voam para coletar dados estruturais de ativos físicos como navios, refinarias e usinas de energia.

Depois, tudo isso entra numa plataforma de AI chamada Cantilever, que combina:

✅ Ontologias baseadas em princípios físicos
✅ Edge robotics + sensores fixos
✅ Modelos preditivos para manutenção e operação

É como se estivessem criando um Digital Twin confiável de infraestruturas críticas — com dados de verdade, coletados direto do mundo físico.

Ah, e agora alcançaram status de unicórnio 🦄:
$1.25B de valuation, com foco em defesa, energia e manufatura pesada.

#MachineLearning #Robótica #MLOps #visãocomputacional
  • 🚨 FALTAM 2 DIAS!
As inscrições para a nova Pós em Visão Computacional & Deep Learning encerram neste domingo, 8 de junho, às 23h59.

Essa é sua chance de dominar IA aplicada, com foco total em projetos, e conquistar oportunidades como Machine Learning Engineer ou Computer Vision Specialist, no Brasil ou no exterior.

🔗 Link na bio para garantir sua vaga com bônus e valor promocional!

#VisaoComputacional #DeepLearning
  • 🤔🤔🤔 verdade ou mentira??
  • 🚀 NOVA PÓS EM VISÃO COMPUTACIONAL!

Seja especialista em Visão Computacional e Deep Learning! 

✔️ 400h de conteúdo
✔️ Curso reconhecido pelo MEC
✔️ Foco em prática e projetos reais

💡 1 CURSO, 2 CARREIRAS
Atue como Machine Learning Engineer E Computer Vision Engineer! 

📅 Aula de lançamento: 1º de junho, 20h

📍 Link na bio. Ative o lembrete e participe!

#computervision #machinelearning #datascience
  • Geo4D apresenta uma nova abordagem para reconstrução 4D monocular de cenas dinâmicas, reutilizando modelos de difusão de vídeo. 

🌀 A técnica dispensa sensores múltiplos ou dados reais — treinando apenas com dados sintéticos e generalizando bem em zero-shot. Isso é possível porque modelos de difusão capturam priors temporais e espaciais consistentes. 

O método prevê múltiplas modalidades geométricas: mapas de pontos, profundidade e raios. Em seguida, utiliza um algoritmo leve de alinhamento multi-modal para fundi-las de forma coerente. Esse processo acontece em janelas deslizantes, permitindo reconstruções 4D contínuas e robustas mesmo em vídeos longos.

Nos benchmarks, o Geo4D superou métodos SOTA como MonST3R em estimativa de profundidade e alcançou bons resultados em pose de câmera. Uma prova do poder de integrar visão computacional e modelos generativos. 🧠

Se curtiu a ideia, deixa seu like e fortalece o post!

Fonte: Zeren Jiang

#machinelearning #computervision #datascience
  • 📸 Reconstrução 3D do Arco do Triunfo com Gaussian Splatting, a partir de um único vídeo

A técnica usada é o Gaussian Splatting, uma abordagem moderna de renderização neural que substitui malhas e voxels por distribuições gaussianas no espaço 3D.

Esses pontos flutuantes carregam cor, opacidade e variância, permitindo uma renderização ultrarrápida e detalhada - ideal para aplicações em realidade aumentada, mapeamento urbano e digital twins.

Diferente dos métodos tradicionais, esse modelo ajusta diretamente os parâmetros das gaussianas, tornando o processo leve e eficiente, inclusive em tempo real.

📌 Fonte: Bohdan Vodianyk

#ComputerVision #VisãoComputacional #MachineLearning #GaussianSplatting
  • Você ainda acredita que resolver as top-150 questões do LeetCode é suficiente para ser aprovado em uma entrevista de Machine Learning Engineer ou Computer Vision Engineer?

Talvez já tenha sido… alguns anos atrás.

Hoje, no entanto, empresas que seguem o padrão de avaliação das FAANG - como Meta (Facebook), Apple, Amazon, Netflix e Google - vêm exigindo muito mais do que apenas conhecimento em algoritmos e estrutura de dados.

✅ Espera-se domínio em ML System Design
✅ Clareza ao comunicar trade-offs técnicos
✅ Experiência real em colocar modelos de machine learning em produção

Passar pela etapa de screening é só o começo.

Se você quer realmente se destacar, aqui estão 3 livros essenciais para estudar com estratégia! Arraste o carrossel para conferir a lista.

📌 Comente se você incluiria algum outro título.
📤 Compartilhe com um colega que também está se preparando.

#machinelearning #computervision #datascience
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.