fbpx
Sigmoidal
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
  • English
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
Sem Resultado
Ver Todos Resultados
Sigmoidal
Sem Resultado
Ver Todos Resultados

Aprender Deep Learning: os 3 melhores cursos em Python

Carlos Melo por Carlos Melo
junho 13, 2019
em Blog, Deep Learning
0
56
COMPARTILHAMENTOS
1.9k
VIEWS
Publicar no LinkedInCompartilhar no FacebookCompartilhar no Whatsapp

No artigo de hoje, quero compartilhar com vocês 3 cursos que considero excelentes para você aprender deep learning e implementar seus próprios códigos.

Apesar de haver muito conteúdo disponível na internet, eu sempre fiquei perdido sobre qual livro/curso escolher entre aquela infinidade de material disponível.

Cursos online grátis para aprender deep learning em Python.
Veja os melhores cursos grátis para aprender Deep Learning

Normalmente, eu acabava caindo em dois extremos: encontrava um bom curso, porém 100% teórico, ou achava cursos em que a única preocupação do autor era usar bibliotecas prontas, sem explicar nada da teoria.

O que eu trago aqui são os 3 cursos que mais gostei, que na minha opinião são os mais completos, e que trazem um bom equilíbrio entre teoria e prática.

Obviamente, não são os únicos existentes para se aprender deep learning (e talvez você tenha outras sugestões melhores), mas estes com certeza vão contribuir muito para você ir mais deep no universo da Inteligência Artificial.

1. Deep Learning Specialization (Coursera)

A especialização em deep learning é minha primeira recomendação, definitivamente. Apenas o fato de o cara por trás do curso ser o Andrew Ng, já seria de extrema relevância. Mas além de tudo, a divisão dos módulos e a estrutura preparada para este curso dentro da plataforma Coursera ficou ótima!

Andrew Ng é uma das pessoas mais influentes do mundo no campo de Inteligência Artificial , um dos fundadores do Coursera, professor adjunto na Universidade Stanford, criador do Google Brain, chefe de pesquisas do Baidu, entre várias outras coisas. Ele ficou muito conhecido pela comunidade graças ao seu primeiro curso de machine learning, lançado há alguns anos na Coursera.

Como aprender deep learning em Python - Especializacão da Coursera  (Andrew Ng)
Figura 1 – Curso de especialização em Deep Learning da Coursera, com Andrew Ng.

Bom, mantendo a mesma qualidade de teoria e exercícios práticos que consagraram o instrutor, eis que está disponível uma especialização completa composta de 5 cursos!  Usando Python como linguagem e Jupyter/iPython Notebooks para documentar todo o processo, todo o código roda diretamente no servidor da Coursera – ou seja, você não vai perder tempo instalando ambientes virtuais, pacotes, etc.

Abrangendo as principais áreas da deep learning, veja como a especialização está dividida:

Curso 1 – Neural Networks and Deep Learning

Este primeiro módulo vai ensinar os fundamentos da deep learning, mostrando as tendências atuais na área, e ensinando a construir na mão (from scratch) redes neurais profundas (deep neural networks).

O Andrew Ng também dá uma atenção especial em detalhar para o aluno a importância de se fazerem implementações vetorizadas, explicando a matemática por trás de operações de Algebra Linear e dando um curso rápido (opcional) sobre a biblioteca numpy.

Ou seja, ele vai mergulhar nos conceitos-chaves das arquiteturas das redes, deixando o aluno apto a colocar os conceitos aprendidos em aplicações diversas.

Curso 2 – Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

Aprendeu a construir suas próprias redes neurais profundas? Que tal melhorar a performance delas entendendo conceitos como hiper-parametrização e otimização?

Neste módulo você vai entender as melhores práticas modernas para construir aplicações deep learning. São abordados conceitos como batch normalization e dropout regularization, por exemplo.

Também são apresentados métodos de otimização (minimizar a loss function) melhores que o Gradient Descent (GD) introduzido no Módulo 1, assim como outros parâmetros que irão melhorar a convergência.

Por fim, você será capaz de implementar 100% uma rede neural no TensorFlow.

Curso 3 – Structuring Machine Learning Projects

Neste terceiro curso, o instrutor compartilha sua experiência pessoal sobre como construir e entregar produtos deep learning.

Ao término do módulo, é esperado que você tenha capacidade de entender e diagnosticar erros em um sistema de machine learning, entender as configurações complexas em um sistema de aprendizado.

Replicando a informação da descrição do módulo, este é um curso que pode ser feito fora da sequência, isoladamente. Tudo que você precisa é de conhecimentos básicos em machine learning.

Curso 4 – Convolutional Neural Networks

Chegamos ao meu curso preferido – definitivamente fui abduzido pela área de Computer Vision. Eis aqui o momento da especialização que trata sobre Redes Neurais Convolucionais (admito que quando comecei a especialização, não consegui terminar o Curso 1 antes deste aqui).

Acho essa área tão fantástica por que considero (opinião totalmente pessoal) a técnica mais disruptiva de todas, e que está revolucionando áreas como a medicina e de carros autônomos – apenas para citar dois exemplos.

Aqui você vai aprender os fundamentos sobre trabalhar com imagens, e vai construir sua rede neural convolucional na raça, e aplicá-la diretamente nos exercícios preparados pelo Andrew Ng. Além de aplicar sua rede em tarefas de reconhecimento e classificação de imagens, verá ainda um sub-módulo sobre “transferência de estilo” para gerar arte.

Figura 2 – Exercício prático do Curso 3, onde você implementa o YOLO para detectar carros.

O instrutor faz ainda um review detalhado e muito didático sobre as principais arquiteturas modernas de redes convolucionais, entra em conceitos como data augmentation, e evolui até os complexos problemas de detecção de objetos.

Para ter noção da profundidade deste módulo, em um dos exercícios práticos você vai  implementar o sistema YOLO, estado da arte para detecção de objetos em tempo real, para detectar carros em frames de um vídeo.

Curso 5 – Sequence Models

Finalizando a especialização, aqui você vai aprender a construir modelos de Processamento de Linguagem Natural (PLN) e outros modelos sequenciais.

Entre os assuntos abordados aqui, estão Recurrent Neural Networks (RNNs) e algumas variantes comumente encontradas, como GRUs e LSTMs.

Ao final do módulo você vai poder aplicar as estruturas a problemas de linguagem natural e à aplicações envolvendo reconhecimento de fala.

2. Fast.ai

O curso da fast.ai é muito recomendado para todos os níveis de conhecimento em deep learning, mas especialmente recomendados para aqueles que estão começando do zero. Como está escrito no próprio site, o curso inicial não requer pré-requisito de conhecimento em machine learning.

Segundo a definição do fundador do site fast.ai, Jeremy Howard, o objetivo desse MOOC (Massive Open Online Course) é “tornar o poder da deep learning acessível para todos”.

Quem já ouviu algum discurso ou palestra do Jeremy Howard na internet, sabe que ele acredita profundamente que para uma tecnologia atingir seu potencial pleno de impacto na sociedade, é necessário que esta seja muito fácil de usar, confiável e muito intuitiva.

Com esse pensamento na cabeça, o curso todo é pensado em todos tipos de público alvo, e é feito para que qualquer pessoa com apenas 1 ano de experiência em programação possa sair ao final da primeira aula escrevendo uma rede neural convolucional capaz de atingir mais de 97% de acurácia no desafio Dogs vs. Cats do Kaggle. Ou seja, abordagem top-down, com hands-on desde o primeiro minuto.

Para justificar esse método utilizado (primeiro se aprende na prática e somente depois se estudam os conceitos de deep learning), Howard faz uma analogia com as aulas de música: faria sentido você estudar teoria musical durante 6 anos (em um curso de piano) para somente no final começar a tocar de fato o instrumento?

Como aprender deep learning em Python - Fast.ai  (Jeremy Howard)
Figura 3 – Aula sobre detecção de objetos com deep learning, do site fast.ai.

Para tornar possível uma pessoa com pouquíssimo conhecimento escrever aplicações deep learning , Jeremy Howard e Rachel Thomas (co-fundadora do site) desenvolveram um framework robusto e completo, e escreveram bibliotecas prontas, que atingem tanto desenvolvedores como usuários finais.

O curso todo é realizado em instâncias da Paperspace (para fazer uso do poder das GPUs) e é muito bem documentado (wiki, fórum, Jupyter notebooks, etc). O mesmo é dividido em 2 partes, cada uma com 7 módulos completos (detalhes da Parte 1 e Parte 2 aqui).

Então, se esse é seu primeiro contato com deep learning, recomendo dar uma checada no fast.ai e ver logo as aplicações na prática. Assim você prototipa rapidamente suas ideias e vê se realmente gostou de vivenciar a área.

fast.ai is dedicated to making the power of deep learning accessible to all.

JEREMY HOWARD

3. CS231n: Convolutional Neural Networks for Visual Recognition

O curso CS231n é um curso específico para a área de Computer Vision. Ministrado ao longo de 10 semanas de aulas em Stanford, a teoria é excelente e detalhada, e os exercícios são bem práticos.

Neste curso, você vai entrar nos detalhes das arquiteturas de deep learning, botando a mão na massa para implementar, treinar e debugar as redes neurais apresentadas. O destaque do CS231n vai para o fato de que os detalhes da matemática envolvida são bem acadêmicos e completos (que tal entender as derivações da backpropagation, por exemplo).

Como aprender deep learning em Python - CS 231n (Stanford)
Figura 4 – Slide do curso CS231n de Stanford sobre Redes Neurais Convolucionais. Fonte: CS231n.

Na primeira parte do curso, é dada uma introdução sobre o contexto histórico da Computer Vision, e são apresentadas as primeiras abordagens rudimentares usadas para resolver problemas de classificação (K-nearest neighbor, classificação linear, etc).

Evoluindo os conceitos, são abordadas as redes neurais, o algoritmo backpropagation, as redes neurais convolucionais, problemas de detecção e segmentação, entre outros conceitos mais avançados. A programação completa das aulas está no Syllabus do curso. Detalhe importante, apenas os vídeos de 2017 se encontram liberados para não-alunos.

Para os exercícios, é utilizado o Google Cloud. Há um notebook bem detalhado sobre como o aluno deve criar sua instância, conectar via SSH e acessar os exercícios nessa instância.

Apesar de haverem exercícios práticos muito bem elaborados, este é um curso acadêmico, com ênfase na teoria. Você vai ver muita derivada parcial, operações de vetores e matrizes, e ver conceitos bem avançados de matemática.

Por isso, este é um curso recomendado apenas caso você queira dominar o assunto e possua conhecimentos sólidos de Cálculo, Algebra Linear, Probabilidade, Estatística e Python.

Aprenda Deep Learning comigo na Escola de Data Science

Se você está buscando um treinamento em português, com todo material de apoio e reconhecido como um dos melhores do Brasil, eu quero te convidar a conhecer a Escola de Data Science.

Além de aulas semanais ao vivo, você conta com cursos e masterclasses exclusivas. São mais de 150 horas de conteúdo disponíveis imediatamente após a sua matrícula.

Inscreva-se na Escola de Data Science

 

Você terá acesso também a uma sequência de aulas onde eu explico a teoria e matemática por trás das Redes Neurais profundas, como utilizar a biblioteca TensorFlow e ainda farei alguns projetos práticos para você colocar no seu portfólio.

Clique aqui e se inscreva agora na maior Escola de Data Science do Brasil.

Compartilhar4Compartilhar22Enviar
Post Anterior

Redes Neurais Multicamadas com Python e Keras

Próximo Post

Reduzindo o Overfitting com Data Augmentation

Carlos Melo

Carlos Melo

Engenheiro de Visão Computacional graduado em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) e Mestre em Engenharia Aeroespacial pelo Instituto Tecnológico de Aeronáutica (ITA).

Relacionado Artigos

Por que o ChatGPT mente para você?
Artigos

Por que o ChatGPT mente para você?

por Carlos Melo
setembro 16, 2025
Green Card aprovado por habilidades extraordinárias em Data Science
Blog

Green Card aprovado por habilidades extraordinárias em Data Science

por Carlos Melo
julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens
Artigos

O Que é Amostragem e Quantização no Processamento de Imagens

por Carlos Melo
junho 20, 2025
Curso de Pós-Graduação em Data Science
Data Science

Vale a pena fazer uma Pós-Graduação em Data Science?

por Carlos Melo
janeiro 20, 2025
Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”
Livros

Review do Livro “Mãos à obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow”

janeiro 18, 2025
Próximo Post
Reduzindo o Overfitting com Data Augmentation

Reduzindo o Overfitting com Data Augmentation

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pós-Graduação em Data Science Pós-Graduação em Data Science Pós-Graduação em Data Science

Mais Populares

  • Introdução ao MediaPipe e Pose Estimation

    Introdução ao MediaPipe e Pose Estimation

    512 compartilhamentos
    Compartilhar 205 Tweet 128
  • Por que o ChatGPT mente para você?

    9 compartilhamentos
    Compartilhar 4 Tweet 2
  • ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

    425 compartilhamentos
    Compartilhar 170 Tweet 106
  • Geometria da Formação de Imagens: Matrizes, Transformações e Sistemas de Coordenadas

    398 compartilhamentos
    Compartilhar 159 Tweet 100
  • O Que é Amostragem e Quantização no Processamento de Imagens

    20 compartilhamentos
    Compartilhar 8 Tweet 5
  • Em Alta
  • Comentários
  • Mais Recente
Como Tratar Dados Ausentes com Pandas

Como Tratar Dados Ausentes com Pandas

agosto 13, 2019
Como usar o DALL-E 2 para gerar imagens a partir de textos

Como usar o DALL-E 2 para gerar imagens a partir de textos

dezembro 25, 2022
Introdução ao MediaPipe e Pose Estimation

Introdução ao MediaPipe e Pose Estimation

julho 15, 2023

ORB-SLAM 3: Tutorial Completo para Mapeamento 3D e Localização em Tempo Real

abril 10, 2023
Como Analisar Ações da Bolsa com Python

Como Analisar Ações da Bolsa com Python

15
Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

Setembro Amarelo: Análise do Suicídio no Brasil, com Data Science

13
Como Aprender Data Science?

Como Aprender Data Science?

9
Qual o Cenário de Data Science no Brasil hoje?

Qual o Cenário de Data Science no Brasil hoje?

8
Por que o ChatGPT mente para você?

Por que o ChatGPT mente para você?

setembro 16, 2025
Green Card aprovado por habilidades extraordinárias em Data Science

Green Card aprovado por habilidades extraordinárias em Data Science

julho 14, 2025
O Que é Amostragem e Quantização no Processamento de Imagens

O Que é Amostragem e Quantização no Processamento de Imagens

junho 20, 2025
DeepSeek vazamento de dados de usuários

DeepSeek: Vazamento de dados expõe dados de usuários

fevereiro 1, 2025

Seguir

  • 🐍 PYTHON DO ZERO está de volta!
Agora como curso reconhecido pelo MEC.

Chegou a hora de aprender a habilidade mais poderosa do mercado de trabalho na próxima década.

Se você quer finalmente aprender PYTHON de verdade, sem enrolação e com uma metodologia feita para o mercado, essa é sua chance.

Hoje, comemorando 5 anos do primeiro lançamento da Turma 1, decidi abrir uma exceção histórica.

APRENDA PYTHON DO ZERO! 

🎉Matricule-se agora e garanta a oferta de aniversário do Sigmoidal.
  • 🚀 PROJETO COMPLETO DE DATA SCIENCE (AO VIVO)!

Neste domingo, às 21h, você vai aprender como construir um modelo de precificação de imóveis do zero, usando dados reais e técnicas de Data Science aplicadas ao mercado imobiliário.

Vamos passar pela análise exploratória de dados, entender padrões de preços, criar e validar um modelo de machine learning e discutir como melhorar a acurácia e interpretar os resultados.

💻📊 Uma aula prática e direta para quem quer dominar modelagem preditiva e transformar dados em decisões reais no mercado de imóveis.

>>> LINK NA BIO!

#datascience #cientistadedados #machinelearning
  • 🚀 PYTHON + DATA SCIENCE = Vigilância Aérea em Tempo Real

Treinei uma arquitetura baseada na YOLO (para detecção de objetos) e criei um servidor RTMP com NGINX para conseguir transmitir imagens do DJI Mavic Air 2 e processá-las ao vivo.

Esse projeto é um exemplo de como é possível aprender Data Science na prática!

#datascience #machinelearning #python
  • Até quando você vai continuar estagnado e sem clareza sobre a direção da sua carreira?

A verdade é simples: aprender a programar é a habilidade número um para qualquer profissional hoje, independente da área ou idade.

💻 Saber programar não é exclusividade de quem trabalha em tecnologia.

A pergunta é: você vai continuar no lado de quem espera por soluções prontas e fica preso a tarefas manuais, ou vai migrar para o lado de quem entende a tecnologia e usa programação para crescer, inovar e ganhar vantagem competitiva?

Comece agora. Aprender Python é o primeiro passo para abrir portas que você nem sabia que existiam.

#python #datascience #machinelearning
  • 💰 Você sabe o que faz e quanto ganha um cientista de dados?

Ser Cientista de Dados significa trabalhar com inteligência artificial, estatística e programação para transformar dados em decisões que movimentam negócios e impactam bilhões de pessoas.

É a função que dá vida a recomendações personalizadas, modelos preditivos e sistemas inteligentes que mudam a forma como empresas inovam.

E não é apenas fascinante...

💼💰 É também uma das carreiras mais bem remuneradas da área de tecnologia!

Se você quer uma carreira com futuro, relevância e excelente retorno financeiro, Data Science é o caminho certo!

#cientistadedados #datascience #python
  • Você colocaria fraldas do lado das cervejas no seu supermercado? 🤔

Parece estranho, mas foi exatamente essa descoberta que mudou as vendas do Walmart.

Os cientistas de dados da empresa analisaram milhões de transações com uma técnica de Data Mining que identifica padrões de compra e combinações inesperadas de produtos.

Então, usando algoritmos da Data Science, cruzaram dados de horário, perfil de cliente e itens comprados juntos.

Encontraram algo curioso: homens que passavam no mercado após as 18h para comprar fraldas, muitas vezes no caminho de casa, também compravam cerveja 🍺.

O Walmart testou a hipótese: colocou fraldas perto da seção de cervejas.

O resultado? As vendas de cerveja dispararam. 🚀

Esse é um exemplo clássico de como Data Science gera impacto direto no negócio.

Não é sobre algoritmos complexos apenas; é sobre transformar dados históricos em decisões inteligentes e lucrativas.

#datascience #cientistadedados #machinelearning
  • Conheça as formações da Academia Sigmoidal.

Nossos programas unem rigor acadêmico, prática aplicada e dupla certificação internacional, preparando você para atuar em Data Science, Visão Computacional e Inteligência Artificial com impacto real no mercado.

🤖 Pós-Graduação em Data Science: Forma Cientistas de Dados e Engenheiros de Machine Learning do zero, com Python, estatística e projetos práticos do mundo real.

👁️ Pós-Graduação em Visão Computacional: Especialize-se em processamento de imagens, Deep Learning, redes neurais e navegação autônoma de drones, tornando-se Engenheiro de Visão Computacional ou Engenheiro de Machine Learning.

📊 MBA em Inteligência Artificial: Voltado a profissionais de qualquer área, ensina a aplicar IA estrategicamente em negócios, usando automação, agentes de IA e IA generativa para inovação e competitividade.

Além do título de Especialista reconhecido pelo MEC, você ainda conquista uma Dupla Certificação Internacional com o STAR Research Institute (EUA).

💬 Interessado em dar o próximo passo para liderar no mercado de tecnologia? Me envie uma mensagem e eu te ajudo pessoalmente com a matrícula.

#DataScience #InteligenciaArtificial #VisaoComputacional
  • Treinar um modelo significa encontrar um bom conjunto de parâmetros. Esse conjunto é definido pela função objetivo, também chamada de função de perda. 👀

O gradient descent é o algoritmo que ajusta esses parâmetros passo a passo. Ele calcula a direção de maior inclinação da função de perda e move o modelo para baixo nessa curva. ⬇️

Se o parâmetro é o peso que multiplica X ou o bias que desloca a reta, ambos são atualizados. Cada iteração reduz o erro, aproximando o modelo da solução ótima.

A intuição é simples: sempre que a função de perda é maior, o gradiente aponta o caminho. O algoritmo segue esse caminho até que não haja mais descida possível. 🔄 

#inteligênciaartificial #datascience #machinelearning
  • Qual a melhor linguagem? PYTHON ou R?

Diretamente do túnel do tempo! Resgatei esse vídeo polêmico de 2021, quem lembra??

#DataScience #Python #R #Programação
  • 🎥 Como começar uma CARREIRA como CIENTISTA DE DADOS

Você já pensou em entrar na área que mais cresce e que paga os melhores salários no mundo da tecnologia?

Domingo você vai descobrir o que realmente faz um Cientista de Dados, quais são as habilidades essenciais e o passo a passo para dar os primeiros passos na carreira.

Eu vou te mostrar um mapa para você sair do zero e se preparar para trabalhar com Data Science em 2026.

📅 Domingo, 28 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

Clique no link dos Stories e receba o link da aula ao vivo!

#datascience #machinelearning #cientistadedados
  • VISÃO COMPUTACIONAL está no centro de um dos avanços mais impressionantes da exploração espacial recente: o pouso autônomo da missão Chang’e-5 na Lua. 🚀🌑

Durante a descida, câmeras de alta resolução e sensores a laser capturavam continuamente o relevo lunar, enquanto algoritmos embarcados processavam as imagens em tempo real para identificar crateras e obstáculos que poderiam comprometer a missão.

Esses algoritmos aplicavam técnicas de detecção de bordas e segmentação, aproximando crateras por elipses e cruzando a análise visual com dados de altímetros. Assim, a IA conseguia selecionar regiões planas e seguras para o pouso, ajustando a trajetória da nave de forma autônoma. 

Esse processo foi indispensável, já que a distância entre Terra e Lua gera atraso de comunicação que inviabiliza controle humano direto em tempo real.

Esse caso ilustra como IA embarcada está deixando de ser apenas uma ferramenta de análise pós-missão para se tornar parte crítica das operações espaciais autônomas em tempo real — um passo essencial para missões em Marte, asteroides e no lado oculto da Lua.

(PS: Vi o Sérgio Sacani, do @spacetoday , postando isso primeiro.)

#visaocomputacional #machinelearning #datascience
  • 🔴Aprenda a MATEMÁTICA por Trás do MACHINE LEARNING

Você já se perguntou como as máquinas aprendem?🤖 

A resposta está na matemática que dá vida ao Machine Learning. E neste vídeo, você vai aprender os conceitos fundamentais que sustentam os algoritmos de inteligência artificial, de forma clara e acessível.

Mais do que apenas fórmulas, a ideia é mostrar como cada peça matemática se conecta para transformar dados em aprendizado. Se você deseja compreender a lógica por trás do funcionamento das máquinas, essa aula é um ótimo ponto de partida.

📅 Domingo, 21 de setembro
🕖 20:00h (horário de Brasília)
🔗 Link nos Stories

#machinelearning #datascience #cientistadedados
  • 🚀 As matrículas estão abertas!
Depois de quase 1 ano, a nova turma da Pós-Graduação em Data Science chegou.

NOVIDADE: agora com Dupla Certificação Internacional:
🇧🇷 Diploma de Especialista reconhecido pelo MEC
🇺🇸 Certificado do STAR Research Institute (EUA)

Aprenda Data Science na prática, domine Machine Learning e IA, e conquiste reconhecimento no Brasil e no mundo.

2025 pode ser o ano em que você dá o passo decisivo para se tornar Cientista de Dados.

🔗 Clique no link da bio e reserve sua vaga!
#datascience #cienciadedados #python
  • Por que o CHATGPT MENTE PARA VOCÊ? 🤔

Já percebeu que o ChatGPT às vezes responde com confiança... mas está errado? 

Isso acontece porque, assim como um aluno em prova, ele prefere chutar do que deixar em branco.
Essas respostas convincentes, mas erradas, são chamadas de alucinações.

E o que o pesquisadores da OpenAI sugerem, é que esse tipo de comportamento aparece porque os testes que treinam e avaliam o modelo premiam o chute e punem a incerteza.

Então, da próxima vez que ele ‘inventar’ algo, lembre-se: não é pessoal, ele apenas for treinado dessa maneira!
#inteligênciaartificial #chatgpt #datascience
  • ChatGPT: um "estagiário de LUXO" para aumentar sua produtividade na programação.

 #programacao #copiloto #produtividade #streamlit #dashboard #tecnologia #devlife
  • Da série “Foi a IA que me deu”, vamos relembrar minha viagem pra Tromsø, na Noruega, 500 km acima da linha do Círculo Polar Ártico. 🌍❄️

No vídeo de hoje, você vai aprender o que é um "fiorde"! 

Como você dormia sem saber o que era um fiorde?? 😅
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categorias

  • Aeroespacial
  • Artigos
  • Blog
  • Carreira
  • Cursos
  • Data Science
  • Deep Learning
  • Destaques
  • Entrevistas
  • IA Generativa
  • Livros
  • Machine Learning
  • Notícias
  • Python
  • Teoria
  • Tutoriais
  • Visão Computacional
  • Youtube

Navegar por Tags

camera calibration carreira chatgpt cientista de dados cnn computer vision Cursos dados desbalanceados data science data science na prática decision tree deep learning gpt-3 histograma IA generativa image formation inteligência artificial jupyter kaggle keras machine learning matplotlib mnist nft openai opencv overfitting pandas profissão python redes neurais redes neurais convolucionais regressão linear regressão logística salário scikit-learn seaborn sklearn tensorflow titanic tutorial visão computacional vídeo youtube árvore de decisão

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Sem Resultado
Ver Todos Resultados
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • English

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.