fbpx
Sigmoidal
  • Home
  • LinkedIn
  • About me
  • Contact
No Result
View All Result
  • Português
  • Home
  • LinkedIn
  • About me
  • Contact
No Result
View All Result
Sigmoidal
No Result
View All Result

What is Sampling and Quantization in Image Processing

Carlos Melo by Carlos Melo
June 20, 2025
in Blog, Computer Vision, Posts
0
6
SHARES
185
VIEWS
Share on LinkedInShare on FacebookShare on Whatsapp

Have you ever stopped to think about what happens between the moment light enters a camera lens, is focused at the focal point, passes through the Bayer filter, hits the sensor… and then that electromagnetic wave transforms into an array of numbers representing the captured image?

How can a continuous wave from the real world turn into a matrix with values between 0 and 255?

In this article, I will show you the basic principle behind the formation of digital images. We will understand how a digital image can be formed through two fundamental processes: sampling and quantization. The complete source code with Python examples is available below.

Download the Code for Free

To follow this tutorial, download the code by clicking the button below.

Sampling and Quantization

Just as for Aristotle, motion is the transition from potentiality to actuality, the creation of a digital image represents the realization of a continuous visual potential (captured by light) into a finite set of discrete data through sampling and quantization.

What is Sampling and Quantization in Image Processing

Imagine a photograph as an infinite painting, where each point in the image plane has a light intensity. This intensity is described by a continuous function defined as:

    \[f: \mathbb{R}^2 \rightarrow \mathbb{R},\]

where f(x, y) represents the grayscale level (or brightness) at the point (x, y). In the real world, x and y can take any real value, but a computer requires a finite representation: a grid of discrete points.

Sampling: Discretization of the image in the spatial domain (x, y)

Spatial sampling is the process of selecting values of this function on a regular grid, defined by intervals \Delta x and \Delta y. The result is a matrix M = (m_{ij}) of dimensions W \times H, where W is the width and H is the height in pixels. Each element of the matrix is given by:

    \[m_{ij} = f(x_0 + i \cdot \Delta x, y_0 + j \cdot \Delta y)\]

Think of it as placing a checkered screen over the painting: each square (pixel) captures the average value of f at that point.

The spatial resolution depends on the density of this grid, measured in pixels per unit of distance (such as DPI, or dots per inch). Smaller values of \Delta x and \Delta y mean more pixels, capturing finer details, like the outlines of a leaf in a photograph.

    \[\text{Continuous image: } f(x, y) \quad \rightarrow \quad \text{Digital image: } \begin{bmatrix} m_{00} & m_{01} & \cdots & m_{0, W-1} \\ m_{10} & m_{11} & \cdots & m_{1, W-1} \\ \vdots & \vdots & \ddots & \vdots \\ m_{H-1, 0} & m_{H-1, 1} & \cdots & m_{H-1, W-1} \end{bmatrix}.\]

For example, a Full HD image (1920 \times 1080 pixels) has higher spatial resolution than a VGA image (640 \times 480 pixels), assuming the same physical area. Spatial sampling can be visualized as the transformation of a continuous function into a discrete matrix, as shown above.

Quantization: Discretization of intensity levels

With the grid of points defined, the next step is to discretize the intensity values. In the real world, these values are continuous, but a computer requires a finite number of levels. This process, called intensity quantization, is performed by a quantization function:

    \[q: \mathbb{R} \rightarrow \{0, 1, \ldots, L-1\},\]

where L is the number of intensity levels. For grayscale images, it is common to use 1 byte (8 bits) per pixel, resulting in L = 2^8 = 256 levels, with 0 representing black and 255 representing white.

Imagine intensity as the height of a wave at each pixel. Quantization is like measuring that height with a ruler that has only L markings. The function q maps each real value to the nearest discrete level, creating a staircase-like representation. Thus, the pixel value at position (i, j) is:

    \[m_{ij} = q(f(x_0 + i \cdot \Delta x, y_0 + j \cdot \Delta y)).\]

Intensity Resolution

The intensity resolution, determined by L, affects visual quality. With L = 256 (8 bits), brightness transitions are smooth, ideal for common photos. However, with L = 16 (4 bits), artifacts like the “banding” effect appear, where color bands become visible.

In medical applications, such as tomography, 10 to 12 bits (L = 1024 or 4096) are used for greater fidelity.

For numerical processing, values can be normalized to the interval [0, 1] by an affine transformation f \leftarrow a f + b, and requantized for storage.

Discrete Structure and Computational Implications

Spatial sampling and intensity quantization convert a continuous image into a matrix of integers, where each m_{ij} represents the intensity of a pixel.

This discrete structure is the foundation of digital processing and imposes practical limitations. The space required to store an image is given by:

    \[b = W \cdot H \cdot k, \quad \text{with } k = \log_2(L).\]

For example, for a Full HD image (1920 \times 1080) with L = 256 (k = 8 bits), we have:

    \[b = 1920 \cdot 1080 \cdot 8 = 16,588,800 \text{ bits} \approx 2 \text{ MB}.\]

This justifies the use of compression (like JPEG), which reduces the final size by exploiting redundant patterns without significant visual loss.

Both spatial resolution (W \times H) and intensity (L) affect computer vision algorithms. More pixels increase detail and computational cost; more bits per pixel improve accuracy but require more memory.

Sampling and Quantization in Practice with Python

Now, let’s explore two practical examples to understand how continuous signals are transformed into digital representations. First, we’ll simulate a one-dimensional (1D) signal, like the sound of a musical instrument. Then, we’ll apply the same concepts to a real grayscale image.

Example 1: Sampling and Quantization of a 1D Signal

Imagine you’re recording the sound of a guitar. The vibration of the strings creates a continuous sound wave, but to turn it into a digital file, we need to sample in time and quantize the amplitude.

Let’s simulate this with a synthetic signal—a combination of sines that mimics complex variations, like a musical note. We’ll divide this example into three parts: signal generation, sampling, and quantization.

Part 1: Generating the Continuous Signal

First, we create an analog signal by combining three sines with different frequencies. This simulates a complex signal, like a sound wave or a light pattern.

# Importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt

# Generating a continuous signal (combination of sines)
x = np.linspace(0, 4*np.pi, 1000)
y = np.sin(x) + 0.3 * np.sin(3*x) + 0.2 * np.cos(7*x)

What’s happening here?

  • We use np.linspace to create 1000 points between 0 and 4\pi, “simulating” the continuous domain (like time).
  • The signal y is a sum of sines (\sin(x) + 0{.}3\sin(3x) + 0{.}2\cos(7x)), creating smooth and abrupt variations, like in a real signal.
  • The graph shows the continuous wave, which is what a sensor (like a microphone) would capture before digitization.

Part 2: Sampling the Signal

Now, we sample the signal at regular intervals, simulating what a sensor does when capturing values at discrete points.

# Sampling: discretizing the continuous domain
sample_factor = 20
x_sampled = x[::sample_factor]
y_sampled = y[::sample_factor]

What’s happening here?

  • The sample_factor = 20 reduces the signal to 1/20 of the original points, taking 1 point every 20.
  • x[::sample_factor] and y[::sample_factor] select regularly spaced points, simulating spatial or temporal sampling.
  • The graph shows the samples (red points) over the continuous signal, highlighting the domain discretization.

Part 3: Quantizing the Sampled Signal

Finally, we quantize the sampled values, limiting the amplitude to 8 discrete levels, as an analog-to-digital converter would do.

# Quantization: reducing amplitude resolution
num_levels = 8
y_min, y_max = y.min(), y.max()
step = (y_max - y_min) / num_levels
y_quantized = np.floor((y_sampled - y_min) / step) * step + y_min

# Plotting the signal with sampling and quantization
plt.figure(figsize=(10, 4))
plt.plot(x, y, label='Continuous Signal', alpha=0.75, color='blue')
markerline, stemlines, baseline = plt.stem(x_sampled, y_sampled,
                                          linefmt='r-', markerfmt='ro', basefmt=' ',
                                          label='Samples')
plt.setp(markerline, alpha=0.2)
plt.setp(stemlines, alpha=0.2)

# Horizontal quantization lines
for i in range(num_levels + 1):
    y_line = y_min + i * step
    plt.axhline(y_line, color='gray', linestyle='--', linewidth=0.5, alpha=0.6)

# Vertical sampling lines
for x_tick in x_sampled:
    plt.axvline(x_tick, color='gray', linestyle='--', linewidth=0.5, alpha=0.6)

# Quantization boxes with filling
delta_x = (x[1] - x[0]) * sample_factor
for xi, yi in zip(x_sampled, y_quantized):
    plt.gca().add_patch(plt.Rectangle(
        (xi - delta_x / 2, yi),
        width=delta_x,
        height=step,
        edgecolor='black',
        facecolor='lightgreen',
        linewidth=1.5,
        alpha=0.85
    ))

# Quantized points
plt.scatter(x_sampled, y_quantized, color='green', label='Quantized')
plt.title("Sampled and Quantized Signal (8 Levels felici)")
plt.xlabel("Time")
plt.ylabel("Amplitude")
plt.legend()
plt.grid(False)
plt.tight_layout()
plt.show()

What’s happening here?

  • We calculate the quantization interval (step) by dividing the total amplitude (y_max - y_min) by num_levels = 8.
  • The np.floor function maps each sampled value to the nearest quantized level.
  • Green rectangles highlight the quantization “boxes,” showing how continuous values are approximated by discrete levels.
  • The final graph combines the continuous signal, samples, and quantized values, illustrating the loss of fidelity.

Practical tip: Try changing sample_factor to 10 (more samples) or num_levels to 4 (fewer levels) and observe how the signal becomes more or less faithful to the original.

Example 2: Sampling and Quantization of a Real Image

Now, let’s apply sampling and quantization to a real image, like a photo you’d take with your phone. Here, spatial sampling defines the resolution (number of pixels), and intensity quantization determines the grayscale tones.

Part 1: Loading the Grayscale Image

First, we load an image and convert it to grayscale, turning it into a NumPy matrix.

# Importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from pathlib import Path

# Base path for images
NOTEBOOK_DIR = Path.cwd()
IMAGE_DIR = NOTEBOOK_DIR.parent / "images"

# Loading grayscale image
img = Image.open(IMAGE_DIR / 'hexapod.jpg').convert('L')
img_np = np.array(img)

# Displaying original image
plt.figure(figsize=(6, 4))
plt.imshow(img_np, cmap='gray')
plt.title("Original Grayscale Image")
plt.axis('off')
plt.show()
My photo with the hexapod, used to demonstrate the concepts of sampling and quantization in digital images.

What’s happening here?

  • We use PIL.Image.open to load the image hexapod.jpg and .convert('L') to transform it into grayscale (values from 0 to 255).
  • We convert the image into a NumPy matrix (img_np) for numerical manipulation.
  • The graph shows the original image, representing a continuous scene before manipulation.

Part 2: Spatial Sampling of the Image

We reduce the image’s resolution, simulating a camera with fewer pixels.

# Spatial sampling with factor 4
sampling_factor = 4
img_sampled = img_np[::sampling_factor, ::sampling_factor]

# Displaying sampled image
plt.figure(figsize=(6, 4))
plt.imshow(img_sampled, cmap='gray', interpolation='nearest')
plt.title("Image with Spatial Sampling (Factor 4)")
plt.axis('off')
plt.show()

What’s happening here?

  • The sampling_factor = 4 reduces the resolution, taking 1 pixel every 4 in both dimensions (width and height).
  • img_np[::sampling_factor, ::sampling_factor] selects a submatrix, reducing the number of pixels.
  • The result is a more “pixelated” image with fewer details, as if captured by a low-resolution camera.

Part 3: Intensity Quantization of the Image

Now, we quantize the values of the sampled image, reducing the grayscale tones to 8 and then to 2 levels.

# Uniform quantization function
def quantize_image(image, levels):
    image_min = image.min()
    image_max = image.max()
    step = (image_max - image_min) / levels
    return np.floor((image - image_min) / step) * step + image_min

# Quantizing the sampled image (8 levels)
quantization_levels = 8
img_quantized_8 = quantize_image(img_sampled, quantization_levels)

# Displaying sampled and quantized image (8 levels)
plt.figure(figsize=(6, 4))
plt.imshow(img_quantized_8, cmap='gray', interpolation='nearest')
plt.title("Sampled + Quantized Image (8 Levels)")
plt.axis('off')
plt.show()

# Quantizing the sampled image (2 levels)
quantization_levels = 2
img_quantized_2 = quantize_image(img_sampled, quantization_levels)

# Displaying sampled and quantized image (2 levels)
plt.figure(figsize=(6, 4))
plt.imshow(img_quantized_2, cmap='gray', interpolation='nearest')
plt.title("Sampled + Quantized Image (2 Levels)")
plt.axis('off')
plt.show()

What’s happening here?

  • The quantize_image function maps intensity values to levels discrete values, calculating the interval (step) and rounding with np.floor.
  • With 8 levels, the image retains some fidelity but loses smooth tone transitions.
  • With 2 levels, the image becomes binary (black and white), showing the extreme effect of quantization.
  • The graphs show how reducing levels creates visual artifacts, like “banding.”

Practical tip: Try changing sampling_factor to 8 or quantization_levels to 16 and see how the image gains or loses quality.

Takeaways

  • Spatial sampling transforms a continuous image into a pixel matrix, defined by a grid of intervals \Delta x and \Delta y. The density of this grid (spatial resolution) determines the amount of detail captured.
  • Intensity quantization reduces continuous brightness values to a finite set of levels (L). A lower L (like 2 or 8 levels) causes loss of detail but can be useful in specific applications, like binarization.
  • The combination of sampling and quantization defines the structure of a digital image, directly impacting file size (b = W \cdot H \cdot \log_2(L)) and the performance of computer vision algorithms.
  • In practical applications, like digital cameras or medical imaging, balancing spatial and intensity resolution is crucial for optimizing quality and computational efficiency.
  • The Python examples illustrate how sampling and quantization visually alter an image, from preserving details with 8 levels to extreme simplification with 2 levels.
ShareShare2Send
Previous Post

Histogram Equalization with OpenCV and Python

Carlos Melo

Carlos Melo

Computer Vision Engineer with a degree in Aeronautical Sciences from the Air Force Academy (AFA), Master in Aerospace Engineering from the Technological Institute of Aeronautics (ITA), and founder of Sigmoidal.

Related Posts

Como equalizar histograma de imagens com OpenCV e Python
Computer Vision

Histogram Equalization with OpenCV and Python

by Carlos Melo
July 16, 2024
How to Train YOLOv9 on Custom Dataset
Computer Vision

How to Train YOLOv9 on Custom Dataset – A Complete Tutorial

by Carlos Melo
February 29, 2024
YOLOv9 para detecção de Objetos
Blog

YOLOv9: A Step-by-Step Tutorial for Object Detection

by Carlos Melo
February 26, 2024
Depth Anything - Estimativa de Profundidade Monocular
Computer Vision

Depth Estimation on Single Camera with Depth Anything

by Carlos Melo
February 23, 2024
Point Cloud Processing with Open3D and Python
Computer Vision

Point Cloud Processing with Open3D and Python

by Carlos Melo
February 12, 2024

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Estimativa de Pose Humana com MediaPipe

Real-time Human Pose Estimation using MediaPipe

September 11, 2023
ORB-SLAM 3: A Tool for 3D Mapping and Localization

ORB-SLAM 3: A Tool for 3D Mapping and Localization

April 10, 2023

Build a Surveillance System with Computer Vision and Deep Learning

1
ORB-SLAM 3: A Tool for 3D Mapping and Localization

ORB-SLAM 3: A Tool for 3D Mapping and Localization

1
Point Cloud Processing with Open3D and Python

Point Cloud Processing with Open3D and Python

1

Fundamentals of Image Formation

0

What is Sampling and Quantization in Image Processing

June 20, 2025
Como equalizar histograma de imagens com OpenCV e Python

Histogram Equalization with OpenCV and Python

July 16, 2024
How to Train YOLOv9 on Custom Dataset

How to Train YOLOv9 on Custom Dataset – A Complete Tutorial

February 29, 2024
YOLOv9 para detecção de Objetos

YOLOv9: A Step-by-Step Tutorial for Object Detection

February 26, 2024

Seguir

  • E aí, Sergião @spacetoday Você tem DADO em casa? 😂😂

A pergunta pode ter ficado sem resposta no dia. Mas afinal, o que são “dados”?

No mundo de Data Science, dados são apenas registros brutos. Números, textos, cliques, sensores, imagens. Sozinhos, eles não dizem nada 

Mas quando aplicamos técnicas de Data Science, esses dados ganham significado. Viram informação.

E quando a informação é bem interpretada, ela se transforma em conhecimento. Conhecimento gera vantagem estratégica 🎲

Hoje, Data Science não é mais opcional. É essencial para qualquer empresa que quer competir de verdade.

#datascience #cientistadedados #machinelearning
  • 🎙️ Corte da minha conversa com o Thiago Nigro, no PrimoCast #224

Falamos sobre por que os dados são considerados o novo petróleo - para mim, dados são o novo bacon!

Expliquei como empresas que dominam a ciência de dados ganham vantagem real no mercado. Não por armazenarem mais dados, mas por saberem o que fazer com eles.

Também conversamos sobre as oportunidades para quem quer entrar na área de tecnologia. Data Science é uma das áreas mais democráticas que existem. Não importa sua idade, formação ou cidade. O que importa é a vontade de aprender.

Se você quiser ver o episódio completo, é só buscar por Primocast 224.

“O que diferencia uma organização de outra não é a capacidade de armazenamento de dados; é a capacidade de seu pessoal extrair conhecimento desses dados.”

#machinelearning #datascience #visãocomputacional #python
  • 📸 Palestra que realizei no palco principal da Campus Party #15, o maior evento de tecnologia da América Latina!

O tema que escolhi foi "Computação Espacial", onde destaquei as inovações no uso de visão computacional para reconstrução 3D e navegação autônoma.

Apresentei técnicas como Structure-from-Motion (SFM), uma técnica capaz de reconstruir cidades inteiras (como Roma) usando apenas fotos publicadas em redes sociais, e ORB-SLAM, usada por drones e robôs para mapeamento em tempo real.

#visãocomputacional #machinelearning #datascience #python
  • ⚠️❗ Não deem ideia para o Haddad! 

A França usou Inteligência Artificial para detectar mais de 20 mil piscinas não declaradas a partir de imagens aéreas.

Com modelos de Deep Learning, o governo identificou quem estava devendo imposto... e arrecadou mais de €10 milhões com isso.

Quer saber como foi feito? Veja no post completo no blog do Sigmoidal: https://sigmoidal.ai/como-a-franca-usou-inteligencia-artificial-para-detectar-20-mil-piscinas/

#datascience #deeplearning #computerVision #IA
  • Como aprender QUALQUER coisa rapidamente?

💡 Comece com projetos reais desde o primeiro dia.
📁 Crie um portfólio enquanto aprende. 
📢 E compartilhe! Poste, escreva, ensine. Mostre o que está fazendo. Documente a jornada, não o resultado.

Dois livros que mudaram meu jogo:
-> Ultra Aprendizado (Scott Young)
-> Uma Vida Intelectual (Sertillanges)

Aprenda em público. Evolua fazendo.

#ultralearning #estudos #carreira
  • Como eu usava VISÃO COMPUTACIONAL no Centro de Operações Espaciais, planejando missões de satélites em situações de desastres naturais.

A visão computacional é uma fronteira fascinante da tecnologia que transforma a forma como entendemos e respondemos a desastres e situações críticas. 

Neste vídeo, eu compartilho um pouco da minha experiência como Engenheiro de Missão de Satélite e especialista em Visão Computacional. 

#VisãoComputacional #DataScience #MachineLearning #Python
  • 🤔 Essa é a MELHOR linguagem de programação, afinal?

Coloque sua opinião nos comentários!

#python #datascience #machinelearning
  • 💘 A história de como conquistei minha esposa... com Python!

Lá em 2011, mandei a real:

“Eu programo em Python.”
O resto é história.
  • Para rotacionar uma matriz 2D em 90°, primeiro inverto a ordem das linhas (reverse). Depois, faço a transposição in-place. Isso troca matrix[i][j] com matrix[j][i], sem criar outra matriz. A complexidade segue sendo O(n²), mas o uso de memória se mantém O(1).

Esse padrão aparece com frequência em entrevistas. Entender bem reverse + transpose te prepara para várias variações em matrizes.

#machinelearning #visaocomputacional #leetcode
  • Na última aula de estrutura de dados, rodei um simulador de labirintos para ensinar como resolver problemas em grids e matrizes.

Mostrei na prática a diferença entre DFS e BFS. Enquanto a DFS usa stacks, a BFS utiliza a estrutura de fila (queue). Cada abordagem tem seu padrão de propagação e uso ideal.

#machinelearning #visaocomputacional #algoritmos
  • 🔴 Live #2 – Matrizes e Grids: Fundamentos e Algoritmos Essenciais

Na segunda aula da série de lives sobre Estruturas de Dados e Algoritmos, o foco será em Matrizes e Grids, estruturas fundamentais em problemas de caminho, busca e representação de dados espaciais.

📌 O que você vai ver:

Fundamentos de matrizes e grids em programação
Algoritmos de busca: DFS e BFS aplicados a grids
Resolução ao vivo de problemas do LeetCode

📅 Terça-feira, 01/07, às 22h no YouTube 
🎥 (link nos Stories)

#algoritmos #estruturasdedados #leetcode #datascience #machinelearning
  • 💡 Quer passar em entrevistas técnicas?
Veja essa estratégia para você estudar estruturas de dados em uma sequência lógica e intuitiva.
⠀
👨‍🏫 NEETCODE.io
⠀
🚀 Marque alguém que também está se preparando!

#EntrevistaTecnica #LeetCode #MachineLearning #Data Science
  • Live #1 – Arrays & Strings: Teoria e Prática para Entrevistas Técnicas

Segunda-feira eu irei começar uma série de lives sobre Estruturas de Dados e Algoritmos. 

No primeiro encontro, falarei sobre um dos tipos de problemas mais cobrados em entrevistas: Arrays e Strings.

Nesta aula, você vai entender a teoria por trás dessas estruturas, aprender os principais padrões de resolução de problemas e aplicar esse conhecimento em exercícios selecionados do LeetCode.

📅 Segunda-feira, 23/06, às 21h no YouTube

🎥 (link nos Stories)

#machinelearning #datascience #cienciadedados #visãocomputacional
  • 🤖 Robôs que escalam, nadam, voam e rastejam.

Acabei de ver o que a Gecko Robotics está fazendo — e é impressionante.
Eles usam robôs que escalam, rastejam, nadam e voam para coletar dados estruturais de ativos físicos como navios, refinarias e usinas de energia.

Depois, tudo isso entra numa plataforma de AI chamada Cantilever, que combina:

✅ Ontologias baseadas em princípios físicos
✅ Edge robotics + sensores fixos
✅ Modelos preditivos para manutenção e operação

É como se estivessem criando um Digital Twin confiável de infraestruturas críticas — com dados de verdade, coletados direto do mundo físico.

Ah, e agora alcançaram status de unicórnio 🦄:
$1.25B de valuation, com foco em defesa, energia e manufatura pesada.

#MachineLearning #Robótica #MLOps #visãocomputacional
  • 🚨 FALTAM 2 DIAS!
As inscrições para a nova Pós em Visão Computacional & Deep Learning encerram neste domingo, 8 de junho, às 23h59.

Essa é sua chance de dominar IA aplicada, com foco total em projetos, e conquistar oportunidades como Machine Learning Engineer ou Computer Vision Specialist, no Brasil ou no exterior.

🔗 Link na bio para garantir sua vaga com bônus e valor promocional!

#VisaoComputacional #DeepLearning
  • 🤔🤔🤔 verdade ou mentira??
Instagram Youtube LinkedIn Twitter
Sigmoidal

O melhor conteúdo técnico de Data Science, com projetos práticos e exemplos do mundo real.

Seguir no Instagram

Categories

  • Aerospace Engineering
  • Blog
  • Carreira
  • Computer Vision
  • Data Science
  • Deep Learning
  • Featured
  • Iniciantes
  • Machine Learning
  • Posts

Navegar por Tags

3d 3d machine learning 3d vision apollo 13 bayer filter camera calibration career cientista de dados clahe computer vision custom dataset data science deep learning depth anything depth estimation detecção de objetos digital image processing histogram histogram equalization image formation job lens lente machine learning machine learning engineering nasa object detection open3d opencv pinhole projeto python quantization redes neurais roboflow rocket salário sampling scikit-learn space tensorflow tutorial visão computacional yolov8 yolov9

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

No Result
View All Result
  • Home
  • Cursos
  • Pós-Graduação
  • Blog
  • Sobre Mim
  • Contato
  • Português

© 2024 Sigmoidal - Aprenda Data Science, Visão Computacional e Python na prática.